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ASYMPTOTIC BEHAVIOR OF A METAPOPULATION MODEL

BY A. D. BARBOUR! AND A. PUGLIESE?

Universitdit Ziirich and Universitd di Trento

We study the behavior of an infinite system of ordinary differential
equations modeling the dynamics of a metapopulation, a set of (discrete)
populations subject to local catastrophes and connected via migration under
a mean field rule; the local population dynamics follow a generalized
logistic law. We find a threshold below which all the solutions tend to total
extinction of the metapopulation, which is then the only equilibrium; above
the threshold, there exists a unique equilibrium with positive population,
which, under an additional assumption, is globally attractive. The proofs
employ tools from the theories of Markov processes and of dynamical
systems.

1. Introduction. The simplest models of population growth and regulation
are formulated in terms of a more or less isolated population in a single habitat.
However, the importance of the spatial dimension has been recognized in a
number of ecological processes, resulting in one of the most active topics in
theoretical ecology: see, for instance, the two recent collections [26] and [8] and
the review article by Neuhauser [22]. These ideas have stimulated the development
of spatially structured stochastic populations models, as in [23] and [10], whose
mathematical analysis is generally very hard.

A very simple model recognizing the spatial dimension of ecological processes
was introduced by Levins [19] in 1969. He envisaged a metapopulation consisting
of many distinct habitat patches, within each of which the population behaves
much as in the single population models, but which are linked to one another by
migration. In his highly simplified model, patches are designated as occupied or
not, and all occupied patches are taken to be equivalent, irrespective of the number
of individuals present. With these simplifications, he obtained a single differential
equation,

d
(1.1) d—’l’ —cop(1—p)—vLp.

describing the behavior of the system: here, p = p(¢) represents the proportion
of occupied patches, vy is the extinction rate and cy, is the colonization rate per
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occupied patch. Hence, an equilibrium exists only if ¢; > vz, and, in that case,
the proportion of empty patches at equilibrium is vz /cr. His ideas have been
widely used, both in theoretical papers and in wildlife management problems (see,
e.g., [15]).

Levins’ metapopulation model has two major weaknesses: on the one hand,
it is based on a mean field assumption (the colonization rate in a patch depends
only on the overall proportion of patches occupied); on the other hand, all patches
are assumed to be equal and described simply as empty or occupied, disregarding
local population dynamics. Addressing the first issue requires the consideration of
spatial stochastic processes as mentioned above. For the second, some authors have
generalized Levins’ model by taking into account the numbers of individuals in the
occupied patches, giving rise to the so-called structured metapopulation models
[12]: they consist either of a finite [21] or infinite number of ordinary differential
equations [5], or of a partial differential equation [12, 13], where the structuring
variable x represents the number of individuals per patch. However, very few
analytical results are available for models of complexity comparable to ours, and
the behavior of these models has mainly been explored through simulation.

In this paper we investigate the deterministic approximation to the metapopula-
tion model discussed in [1]. This is a stochastic mean field metapopulation model,
in which the number of individuals in a patch is governed by a birth, death and
catastrophe process, with the same transition rates in each patch, together with
migration between the patches with a uniform transition rate y per individual, des-
tinations being chosen uniformly at random among all patches. This last, mean
field assumption is probably the least biologically realistic, but has been used in
several papers [15], and may make very good sense for metapopulations of par-
asites in which the patches represent host animals. At all events, it makes the
mathematical treatment substantially simpler.

As is shown in [1], when the number of patches becomes very large, one can
approximate the stochastic model with the following infinite system of differential
equations:

pi()= _|:(bi +di+y)i+v+py ), jpj(t)]Pi(t)
j=0

+ [bi_la —~D+py Y jpj(t)}pi_m
(1.2) /=0
+ldiv1 +y1G + D) piv1(2), i>1,

po(t) = "(Z pi) — po(t)) + (di+7)p1t) — py ( > jpj(t)>po(t),
j=0

j=0

p0)=p",
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in which p; (¢) denotes the proportion of patches that are occupied by i individuals,
i > 0. The parameters b; and d; represent the per capita birth and death rates
in a patch occupied by i individuals, the catastrophe rate is v in each patch, the
migration rate is y per individual, and p is the probability of a migrant successfully
reaching another patch. Note that this model is very similar to those studied by
Metz and Gyllenberg [21] as structured metapopulation models with finite patch
size, and by Casagrandi and Gatto [5].
We also assume the following:

(H1) ib; is concave and nondecreasing; id; is convex and nondecreasing.

It can easily be seen that (H1) implies that b; is nonincreasing and d; non-
decreasing. Hence, there exist by = lim; 5 b; and d = lim;_, , d;, for which
we further assume that

(H2) boo < doo + y(1 — p) +v.

Generally, in logistic demography, the existence of a carrying capacity is assumed:
that is, there is a value K such that bx = dg, which automatically implies that
boo < dxo. (H2) is weaker than that, and is, in fact, the natural condition: if
boo = dxo + y(1 — p) 4 v, there can be no nontrivial equilibrium, as is proved
in Proposition 3.4.

The assumptions of concavity of ib; and convexity of id; are satisfied in
many examples, but not in all; for instance, a Ricker-type birth function b; =
bo exp{—pi} is not allowed. However, they are mathematically convenient assump-
tions, if the uniqueness of any nontrivial equilibrium solution to equations (1.2) is
to be guaranteed, and we make use of them in several steps of our proofs; they
could certainly be relaxed, but it is not easy to see what general conditions would
better replace them.

The existence and uniqueness of the solutions to (1.2) are established in [1],
and a summary of those of her results relevant to this paper is given at the end
of the section. In this paper we consider the possible equilibria 7 of (1.2), using
stochastic coupling arguments that are developed in Section 2. There is always
the “extinction” equilibrium, with 7(0) =1 and 7 (i) =0, i > 1; this is also the
eventual limit of all finite patch stochastic systems, and makes the theory of quasi-
equilibria of essential importance for such models. In addition, if a threshold
condition is satisfied, we show in Section 3 that there is a unique nonnegative
equilibrium having 7 (0) < 1 (Theorem 3.1). This distribution is shown to be the
equilibrium distribution for the single patch dynamics, in which immigration from
outside is fixed at a constant “effective” rate, determined by the nonzero solution
of a fixed point equation (3.3). In Theorem 4.5 of Section 4, we prove global
convergence to this equilibrium when the threshold condition is satisfied, under
the additional assumption that do, < 4+00. The proof of convergence requires a
lemma (Lemma 4.2) which is of some difficulty, because the system (1.2) is infinite
dimensional. Its proof is the content of Section 5.
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The results of our paper give a rather complete description of this infinite
system (1.2) of ordinary differential equations. Similar problems have recently
been studied in other contexts, such as coagulation—fragmentation equations
[2, 18], although for systems of equations of rather different structure. It is possible
that our methods could be useful in other contexts as well.

We conclude the introduction by outlining the results that we need from [1].
First, note that the system (1.2) can be written in a more compact way as

pi=—i + wi)pi + hi—1pi—1 + Rit1Pi+1
(1.3) X o0
+ oy Z]Pj (pi—1— pi) +v|3dio ij —pi>,
j=0 j=0
where
p—1(@):=0 for all ¢, no:=0 and Xro:=0;
Ai:=bji and pu;:=(d;i+y)i foralli > 1.
It is proved in [1] that (1.3) is a well-posed problem in the space m' defined by

m' = {x:(xo,xl,...)T el Zj|x]'| <oo},

J

equipped with the norm

o
Ix[lm = lxol + Y ilxil.

i=0
More precisely, if Q is the infinite matrix
bji, ifi+1=j>0,
—((bi + @ +y))i+v), ifi=],
(Qij =gqij =1 i + )i, ifi—1=j>0,
v(l —=8i0) + (di +y)8i1,  if j=0,
0, otherwise,

and q; = —q,;j, we define the operator A by

D(A) = {u em' ) grlugl < oo};
(1.4) ¢

Au=uQ;  (Au)i =) qriur.
k

Then it turns out that the closure A of A is the generator of a C°-semigroup on m !

(see also [24]).
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We then define the map F :m' — m! by
o0
(1.5) F(£)=PV<Zij)(T—1(£) —1(p)),
j=0

where (T_1(p))i := pi—1 and I is the identity. F is Lipschitz and, in this notation,
the system (1.3) can be written as

p'=Ap+F(p);
p©) = p°

The following theorem is proved in [1].

(1.6)

~—

THEOREM A. Forevery p° > 0¢e D(A) and any T > 0, there exists a unique
p(t)>0eC(0,T]; D(A) NCY0, T1: m') satisfying (1.6). Clearly, p(t) will
also satisfy (1.3) componentwise. N

Moreover, if p* e C ={pem':p >0, Z?O:Opj =1}, then p(t) € C for all
t>0.

Since the p;(¢#) represent the frequencies of sites with i individuals, the
condition p(¢) € C is quite natural, and most of the following results relate only to
that case.

2. Immigration, birth, death and catastrophe processes. The analysis of
the differential equations system (1.2) is accomplished indirectly, using the
properties of a number of associated birth and death processes. We make several
comparisons based on couplings of such processes, which exploit the fact that
birth and death processes cannot cross without meeting. A good general reference
is [20]; in particular, see pages 3 and 4. We begin with a simple lemma.

LEMMA 2.1. Fix a positive integer J, and let V = (V;, t > 0) be the birth
and death process on the integers j > J with transition rates
j—>j+1 atrate jo, j=>J,;

2.1)
j—Jj—1 atrate ju, j=J+1,

for some ¢, i > 0. Then, if E"™ denotes expectation conditional on Vo = m, for
any j' > J, we have the following:

L If ¢ < . then BV} < {j'n/(n — 9)}2.
2. If ¢ > p, then EVI{V2) < (2 e @~ /(¢ — 11))2.
3. If ¢ =, then, for any & > 0, E(j/){sz} < {27 (¢ +e)e Je)?.
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PROOF. Itis enough to conduct the proof for j' = J: for j > J, the V-process
is stochastically smaller than a V -process defined with J replaced by j’.

Suppose first that ¢ < u, in which case V is positive recurrent. Observe that
a monotone coupling of two realizations of V-processes, one with initial state J
and the other starting with its equilibrium distribution 7, shows that EV )(Vtz) <
E™ (VOZ) for all . Now 7 satisfies the detailed balance equation

Jjorn (N =G+ Dux(j+1), j=J;
hence, jr(j) < J(qﬁ//,c)j_J for all j > J, from which it follows that
EV (VA <E" (V) <J Y j@/w'™’
j=J
=Jpuu—¢) 2+ uw—¢) "

this proves part 1.
If > 1, we have

2.2) EV; =E(V [ty =t]) + E(ViI[7) > 1]),

where

rlzinf{t>0; Vi = J, max VSzJ—l—l}foo.

0<s<t

Note that PY)[7; < co] = /¢ and that E(J)(Vtzl[rl >t]) < IE(J)(VZQ), where
V is a birth and death process on Z with rates as in (2.1), but now for all j > 0;
this latter bound implies that

ED (V2 I[r, > t]) < {EV V12 + Var) v,
2.3) < {Je¥=m1) 2 4 JvarD ¥,
< J2POTI 4 g 2OTONAG + ) /(¢ — ) — 1),
Also, again by a monotone coupling of two V -processes,
EV (V2 n <) <PV[r < 1BV (V) = (w/$)EV (VD),
and hence, from (2.2) and (2.3),
EV (V) < ¢/ (@ — 0} J2CT2(p + )/ (9 — ),

proving part 2, and also, once more by stochastic comparison, part 3. [J

Now let X := (X;, t > 0) be an immigration, birth and death process with per
capita birth and death rates B; and §;, respectively, j > 1, and with immigration
rate A. Suppose that the function nf, is concave and increasing in n > 0, and that

ndy is convex and increasing. Then it follows, in particular, that 8, is decreasing
and 4, is increasing in n > 1; we define

2.4) c:= lim B, — lim §,.
n—>od n—oo
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THEOREM 2.2. Let X and c be as above. Then:
1. There exist constants Cy and C1(¢), € > 0, such that
) .
ED(X2) < Ci(1+j9), ifc <0,
C1(e)e2 o (1 4+ j2),  foranye >0, ifc>0.
2. There exist constants Co and Ca(¢), € > 0, such that, for all m > 0,

O S ]E(m-f—l)Xt — E(m)X[ 5 CQ, lfC < O’
Cy()e“T®t foranye >0, ifc > 0.

3. In either case, for all m > 0,

EmtDyx, _Emx, < gty _gmthy,

PROOF. Let ,3} =B+ ] —Ix for j > 1. Then note that, for any positive
integer J, a simple monotone coupling of two birth and death processes shows
that, if Xo < J, then X is stochastically smaller than a birth and death process V
as in Lemma 2.1, having ¢ = g and p = §; and starting with Vo = J, since
Vo = X and the sequences ,3} and §; are nonincreasing and nondecreasing in j,
respectively. If ¢ < 0, choose J so that 8, < 87, and use Lemma 2.1 part 1 to give

EV(X?) <EV(VA) <(J8,/65 — BDY, j<J,
(2.5) i 2 i 2 7 \12
EV (X2 <EV(VA) < {j8;/@85 — BN, j>J.
If ¢ > 0, choose J so that
87 <;3/J <dj+c+e,

if this can be done, and use Lemma 2.1 part 2 as above to give
26  EVXP) <EV VD) < 2max{, jIB,e T /() — ).

The only remaining case occurs when A = 0 and the sequences 8; and §; are both
constant for all j > J for some J, in which case Lemma 2.1 part 2 or 3 can be
applied directly. Combining this observation with (2.5) and (2.6), part 1 is proved.

We now turn to part 2. Let (Y, W) := ((Y;, W), t > 0) be a two-dimensional
pure jump Markov process with transition rates given by

(,j)— @G+1,j) atrate iB;+A,

@(i,j)— (G—1,j) atrate id;,
2.7)

(G, j)—> G j+1) atrate @+ j)Bi+;—ipi,

@, j)— G, j—1) atrate @G+ j)di+j—id;,
for all 7, j > 0. All the transition rates are nonnegative, because both ng, and nd,
are increasing. Then the processes Y and Y + W are also Markovian, both having
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the same generator as the immigration, birth and death process X. Thus, we can
couple realizations X' and X2 of X with X(l) =m and X% =m + 1 by realizing
(Y, W) with Yo =m and Wy = 1, and setting X'=Y and X2=Y + W. Then it is
immediate that X> — X! = W, > 0 for all ; the next step is to bound EW,.

However, just as before, a simple monotone coupling shows that W is
stochastically smaller than a birth and death process V as in Lemma 2.1, having
¢ = ,B/J and u = 6y and starting with Vg = J, since Vo > Wy and, for any i > 0,

(i + ) Bivj —iBi < jBj < jBJ, j=J,
and
(i +j)8ivj—18; > jé; > jéy, Jj=J+1,

by the concavity of nf, and the convexity of né,. Thus, in particular, EW, <
E)V;, and the bounds on E() (Vt2) obtained in part 1 can be invoked, completing
the proof of part 2.

For part 3, we extend (Y, W) to a four-dimensional pure jump Markov process
(Y;, Wy, U;, Vi), t > 0) with transition rates

n—n+e! atrate ipi + A,
n—n—e? atrate ié;,

n—>n+e? atrae (i+ DBi+j —iBi,
n—n—e? atrate i+ j)bivj—idi,

n—n+e® atrate (i +k)Bisk —ifi,

n—>n—e® atrate (i +k)8x —idi,
n—n+e® atrae (i +j+DBirjr— G+ DPij
n—n—e? atrate (G +j+D8itj — G+ DSiv

when n = (i, j, k, ) is such that k # [, the last four transitions being replaced by
n—n+e? + atrate (i +j+k)Birjrk — G+ )i+

n—>n—e® —e®  atrate @+ k)Siyx —idi,

n—>n+e® atrate (i +k)Bivk —ifi — (G +j+KBir; + G+ )DBivs

4)

n—>n—e? atrate (i +j+k)Sipjik — G+ DSivj— ( +K)Sivk +idi,

when n = (i, j, k, k), all transition rates being nonnegative because of the
assumptions on nb, and nd,; here, €™ denotes the mth coordinate vector. The
four processes Y, Y + W, Y 4+ U and Y + W + V are Markov, and each has the
same generator as the immigration, birth and death process X. Thus, realizations
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X!, X2, X3 and X* of X with X(l) =m, X%=X8=m+ 1 and X3=m+2can
be obtained from (Y, W, U, V) by setting X'=v,X2=Y+U,X3=Y+W
and X* =Y 4+ W + V and taking Yo =m, Wo = Uy = Vo = 1. Thus, E" DX, —
E"X, = EU, and E*2 X, —E+D X, = RV,. Initially, Uy = Vo = 1. Thereafter,
both U and V make only unit jumps, and at any time at which U and V are equal,
either they can jump together, or U can increase by 1 or V can decrease by 1.
Thus, U is always greater than or equal to V, and, for each ¢ > 0, U; > V; with
positive probability. Hence, for all ¢ > 0,

EmtDx, —E"X, =FEU, > EV, = E"*t2 x, —E"*+D x,

proving part 3. [J

The theorem above is used in the study of our main object of interest,
a family of immigration, birth, death and catastrophe processes Z®), indexed by
an immigration parameter s. The pure jump Markov process Z*) has transition
rates

Jj— Jj+1 atrate g jy1:=jbj+ pys,
(2.8) j— —1 atrate qj,j—1 :](d] + ),
J— 0 atrate g¢g;o:=v,

and nb, is assumed to be increasing and concave, nd, to be increasing and
convex. The process Z(*) starting with any initial distribution ¥ can be constructed
as follows from a sequence of independent realizations X @, X .. of an
X-process with parameters 8; = b;, A = pys and §; =d; + y, and with X(()O) ~
and X(()") =0, n > 1. Let the times (7,, n > 1) of the catastrophes be the
partial sums of independent negative exponentially distributed random variables
(E,, n > 1) with mean 1/v, which are also independent of (X ™ n > 0). Set
N(t) :=min{n > 0:T, <t}, where Ty := 0; then define

(2.9) 7 = XV (£ = Ty ).

A pair of Z®-processes Z©-D and Z*-?) with different initial states k > [ can then
always be coupled by using the same sequence of X-processes (X, n > 1) and
taking XOD =y + W, X©2 =y, where (Y, W) is as in (2.7) and has Yy = [
and Wy = k — [. With this construction, it is clear that Z\*'" > Z gs,z) for all 7, that
P[z%V > 28] < ¢~V and that

2.10)  0<E(ZzEV —z8?)=eVEW, = ([EXX, —EVX,).
Defining
(2.11) c:= lim b, — lim d, — vy,

n—o0

n—oo
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and assuming that ¢ < v, it thus follows from Theorem 2.2 part 2 that, for k > [,
0<EWZ® —EOZ®
(2.12) (k —DCae™t, ifc <0,
“la- DC(3(v — o)) exp{—3(v —o)t},  ife>0.
Thus, if f:7Z — R is Lipschitz with constant K ( f), then
(2.13) IE® £(z9) —ED £(z9) < Clk — DK (f)e™™
for some C, o > 0. Furthermore, from (2.10) and Theorem 2.2 part 3, we have
(2.14) E(mH)Z,(S) _ E(M)Z,(s) = E(m+2)zt(S) _ E(mH)Z,(S),

forall m,t > 0.

THEOREM 2.3. Let Z be as defined in (2.8), with nb, increasing and
concave, nd, increasing and convex. Suppose that ¢ < v, where c is as defined
in (2.11). Then, for s > 0, Z) is positive recurrent, and its equilibrium
distribution %) has finite mean equal to lim,_, oo E© Z,(s); furthermore, for any

0 <38 <1 for which c(1+6) < v, we can find K1(8) < oo such that

forallt>0and j > 0.
If s =0, the state 0 is absorbing for Z®), and the only stationary distribution is
AIES Aoy, giving probability one to 0.

PROOF. The case s =0 is immediate, so we now suppose that s > 0.
If v =0 and ¢ < 0, the detailed balance equations

(2.16) (Jbj +pys)mj =+ D(djt1 +y)mjt1, j=0,

are satisfied with
.1
T < (11— 8)7'[]',

for some ¢ > 0 and for all j large enough, because ¢ < 0. Hence, (2.16) have a
nonnegative solution with geometrically decreasing tail, and the conclusion of the
theorem follows.

If v > 0, positive recurrence is immediate. Construct Z*) with Z(()s) =0 from a

sequence of X-processes as above. Then, if m(t) := m®) (1) := IEZt(S), we have the
renewal equation

t
m(t) = e ""E{X,|Xo =0} + / ve 'm(t —u)du.
0
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Now, by Lemma 2.1 part 1,

Ci, ifc <0,
EOx, <
Co((v —0)/2)exp{s(v+0)t},  ifc>0,

for suitable constants C; and C,. Furthermore, a monotone coupling of two
X -processes with different initial conditions shows that E© X, increases with .
Hence, the key renewal theorem ([11], page 363) can be applied to conclude that

o0
2.17) m® (c0) := lim EZ :vf e V'E{X,|Xo = 0} dt
—00 0

exists and is finite. But now, because Z®) is nonnegative and positive recurrent, it
follows from (2.17) that 77®) has finite mean, satisfying

79 (e) =B (Z§) <m® (00),

where e(j) := j forall j >0and 7©(f) := Yoo m” £ (k).
Finally, for any 0 < § <1 for which ¢(1 4 §) < v, a similar renewal argument
can be employed, again appealing to Lemma 2.1 part 1, to show that

my (0) =EO{(z")"")
is uniformly bounded for all ¢; hence, the sequence of random variables Z,(S) is
uniformly integrable, and thus, in fact,
(2.18) 79 (e) =m" (00),
proving the first two claims of the theorem. Noting also that, for any & > 0,
ED{(2) )
(2.19) = e "EV x4 /Ot ve 'm (t — u)du

<m$ @)+ 1+ jI) D2 () exp{(1 + 8)(c + £)r — vi},

from Theorem 2.2 part 1, the remaining claim is also proved. [

With these preparations, we can now prove the main result of the section. The
assumptions of Theorem 2.3 are still in force.

THEOREM 2.4. Let 7 denote the equilibrium distribution of the pro-
cess Z9; then w®(f) is continuous in s for any Lipschitz function f.
Furthermore, if e(j) := j for all j > 0, then 7% (e) is an increasing, strictly
concave function of s.
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PROOF. Let A be the generator of the process Z*), so that

(AR () =D qulh@) = h(j)}
I#j

(2.20) =(bj+pys){h(j+1) —h(j)}
+jdj+){h(j =1 —h()H}+v{RO) —h()}
and, for any Lipschitz function f with constant K (f), let 0 ( f) be defined by

oo ,

2.21) 0 (NG == [ BV 1(@7) =2 (p)ar
We begin by showing that 6)( f) is a solution % to the equation
(2.22) (ADR) () =G =), j=0.
First, realizing 7@ () = E*" £(Z), it follows from (2.13) that

[ED £(Z7) =20l
Som BV f(Z) - E(k)f(Zz(S))}‘
k>0

<CK(NHe Y 7k — jl < CK (e {m® (00) + j}.
k>0

Hence, 6©)( f) given in (2.21) is well defined. Now set

(2.23)

T .
07 (NG == [ {EVF(2) =2 () ar

noting that lim7_ o0 65 (£)(j) = 69 (f)(j) by (2.23). Conditioning on the first
jump gives

. T
0% ()(j) = —E“){ /0 1£(Z) = 29) dt}
=—e UTT{f(j) — 7))
T T—u
[ e SanEt ([ @) -2 o))

I#]
(2.24)

ulf () =7} du
=—q; ' A=) {r()H =7}

T
+ [ e g0, () d.
[y
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Now, by (2.23),

168 (H)YD L=<ty < CK(a~" (m® (00) +1)

for all T and u, and gj; > 0 only for [ =0, j — 1, j + 1. Thus, letting T — o0
in (2.24) and using dominated convergence, it follows that

09(HG) = —a7 {F(D =7V} + Y /0 110 (f)(1) du,
I#j
or

FGH =79 =>"qi{oYHO -0V (H (N}
I#]

Thus, 6 (f) solves (2.22).
Furthermore, again using (2.23),

225) 69N+ 1) -0 = /O CIED £(Z9) — B £(2)) dr

and (2.13) immediately gives

(2.26) 09 (HG+D =09 ()] < CK(f)/e;
thus, A6 ( f) is bounded and, hence, also Lipschitz, with constant
(2.27) K(AO©(f)) <2CK(f)/a.

Now, by Dynkin’s formula ([14], Theorem 2), it follows that 78 (A R) = 0 for
all s, for any Lipschitz function 4. In particular, for any ¢t > —s, using (2.20),

0= n(s—i—t) (A(S'H)Q(S)(f)) — Eﬂ(S+t) (A(S—H)Q(s) (f))(Z(()v))
@28)  =E{AC0ON)(Z)) +ori(a0°()(257))

=E""F(Z28) = 7O ) + py1(809 (1)) (2D)).
Thus, from (2.28) and (2.26), it follows that

229) 7SO — 7)) < pyt| AW (H)] < pyItICK (f) /et

for any Lipschitz function f, so that 7)(f) is continuous in s, proving the first
part of the theorem.
It then also follows that

[T =P+ pyea (200 ()]
< py[tl[7 S (269 () — (A0 (1))
and, hence, that
d

(2.30) Is

7O (f)=—pyr (269 (f)).
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Taking f = e, this last can be re-expressed using (2.21) as
d . ) [° ) )
@3 L@ =prE" [ e(z§) +1.0) - g(25" )} ar

where g(j, 1) :=EU )Zt(s). Hence, from Theorem 2.2 part 2, it follows that 7 ) (e)
is increasing in s, proving the next part of the theorem.
Now, from (2.28) with u and 2u for t,

7T = w0 () = —pyun T (A0 (f)
and
n O (f) = O (f) = =2pyun (869 (1))
giving, again from (2.28),
N(S+2u)(f) _ 2n(s+u)(f) + JT(S)(f)
= —2,0yu{n(s+2”)(A6(s)(f)) — n(H”)(AQ(S)(f))}
= 20yu{r (A0 () = 20pur ST (AW (AW (1))
_ N(S)(AQ(S)(]C)) + pyun(s+u)(Ag(s)(Ag(s)(f)))}
=2(pyu)’n (A0 (AW (£))) + 1,
where
Inl < 10(y [u)>CK (A0 (A0 (1)) /a <40(Cpy ul/a) K (f),
this last by (2.29) and (2.27). Hence, 7 ) (f) is twice differentiable, and
:—;”(S)(f) — 2p2y2n(s)(AQ(S)(AG(S)(]‘))).
Now, using the formula given in (2.25), it follows that

AGD (AGD(f))(m)

(2.32)

=- f()oo{E<m+1>A9<s>(f>(z;”) —EMA0Y(f)(2")} dr

(2.33) 00 00
:/ {E(m+l)f {gf(Zt(S)—i-l,w)—gf(Z,(s),w)}dw
0 0

_ mr(m) o (s) _ (s)
E A {er(Z;” +1,w) —gr(Z,”, w)}dw dt,

where gr(l, w) := E(l)f(Zl(,f)). To evaluate (2.33), realize Z>D with Zés’l) =

j+ 1 and 262 with Z{? = j as before, using the Markov process (¥, W)
of (2.7), with Yo = j and Wy = 1, so that

7,60 = 7,6 L W IE, > 1],
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where E| is an independent negative exponential random variable with mean 1/v.

Thus,
A (A ())(j)

. poo poo
(2.34) :E(J)/O /0 e g p (Y, + Wi+ 1, w) — g (Y + Wy, w)

—gr(Vr+1,w)+gr(Y, w)dwdt.

In order to use (2.32) to investigate the curvature of 78 (e), we take f=e
in (2.34). Then, for any k > [,
etk + 1, w) — ge(k, w) — ge(I + 1, w) + ge(l, w)
— [E&+DZ0) _ERZO) _ (E+DZO _EDZ0) <o,

from (2.14), for all w > 0, so that the integrand is always negative. Hence, from
(2.34), it follows that A@® (A6®) (e))(j) < 0 for all j and s, and thus, from (2.32),

d2
Wn(s)(e) <0, s >0.
This completes the proof of the theorem. [

3. Equilibria. We now investigate the equilibrium solutions of (1.3). For the
sake of simplicity, we shall assume here and in all that follows that p = 1. There
is no real loss of generality in this, since one could set di/ =d; +y({ —p) and
y' = yp, and write (1.2) using d’ and y’ in place of d and y. In biological terms,
unsuccessful migration is just one cause of death.

If 7 € m! is such a solution, and

o0
5= Zjnj,
Jj=0

then 7 must solve
O0=—[b;i+di+y)i+v+ysln

(3.1 +[bi-1G = D+ yslmir + [dig1 + y10 + Dmiga, i>1
0=v(l —mo) + (d1 +y)m1 — ysmg.

Hence, m must be the equilibrium distribution of the immigration, birth, death

and catastrophe process Zt(s), which we studied in detail in Section 2. From
Theorem 2.3, and using (H1) and (H2), we know that Z*) has a unique stationary
distribution ), which has finite mean denoted by

(3.2) Gs) =) =) jx.
jzl1
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In order to have an equilibrium solution of (1.3), s must be equal to 78 (e); in
other words, we look for a solution to the equation

(3.3) s=G(s),

a fixed point of the function G.

THEOREM 3.1. Suppose that (H1) and (H2) are satisfied. If G'(0) > 1, then
there exists a unique positive fixed point s* of G; if G'(0) < 1, then G(s) < s for
all s > 0.

REMARK 3.2. Note that s = 0 is always a fixed point of G; the corresponding
equilibrium distribution 7@ s the vector e = (1,0,0,...)T, which can be
interpreted as the extinction equilibrium.

For the proof, we need a technical point.
LEMMA 3.3, Let

m? = xeﬁl,ijpcjl < ooy,
J

with norm

00
2
10,2 = Ixol + ) i%lxl,
i=0

and let Ay be the part of A in m?, that is,
D(Ar) ={x € D(A): Ax € m?}; Arx = Ax.
Then, if p(0) € D(A2), p(t) satisfies

(3.4) ijdjpj(t)<oo.
j=1

PROOF. We first note that the restriction of e4’ to m? is again a C°-semigroup.
This can be established following, with obvious changes, the proofs in [1]. In fact,
repeating step by step the proof of Proposition 6.5 of [1], one sees that Ay — w is
dissipative, as long as w > 3 max; b;. The density of the range is then established
exactly as in Proposition 6.6 of [1].

Moreover, repeating the proofs of Lemmas 6.8 and 6.9 of [1], one sees that the
domain of the restricted semigroup is contained in the set

xel, ijdjlxj| <0y,
j
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and (3.4) follows. [

PROOF OF THEOREM 3.1. First of all, it is proved in Theorem 2.4 that G is
an increasing, strictly concave function in s > 0. We now establish two further
properties of G:

(3.5) G0)=0 and slingoG(s)/s < 1.

The first of these follows because, when s = 0, the equilibrium distribution is
concentrated at 0, so that its mean is 0.

For the limit as s — oo, we let m(t) = m® (t) = E(Z*), with Z*) as defined
in (2.8), noting that G(s) = lim;— oo m®)(¢) as shown in (2.18). Letting p;(t) =
IP’(Zt(S) = j), we can write m(t) = Zj Jjpj®).

The forward equations satisfied by p(r) can be written as p’(t) = A p(t), where

(Ap)i + ys(pi—1 — pi), i>1,

As:D(A)—>m', (A p>,-={ _ ,
’ ' (Ap)o — vspo. i=0,

is a bounded perturbation of the operator A defined in (1.4).
Hence, if the initial value p(0) is in D(A), then p(r) = e?s' p(0) is differen-
tiable as a function from R to m' and we have

m' ()= jpi(1)

j=1
= > (G = Dbj-1+ys)pj-1(0)
=1

(3.6)

j
—((bj +@j+7)j+ys+v)p;)
+ G+ D1 +y)pjr1(D}.
If p(0) € D(A»), the condition (3.4) allows the order of the sums in (3.6) to be
interchanged, and, with some manipulations, we obtain
(3.7) m'(t)y=Y_jbj —dj)p;t) — (y +v)m(t) + ys.
J

Using the concavity of xb(x) and the convexity of xd(x), we obtain

(3.8) > jbjpj(t) <m®)b(m@)) and Y jd;p;()=m()d(m(1)).
J J

Hence, from (3.7), it follows that

(3.9 m'(t) < m@)[b(m (1)) —d(m(t)) —y —vI+ys,
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so that m () < x®(¢), where x := x®)(¢) is the solution of the Cauchy problem
x'=x[b(x)—d(x)—y —v]+ys,
(3.10)
x(0) = m(0).

Since D(A») is dense in D(A), it follows that m(¢) < x®)(¢) for all p0) € D(A).
Set

3.11) a=V+de —boo >0
because of (H2), and choose m such that
b(m) —d(m) —v=—a/2,
if this is possible; otherwise, set m = 0. In any case, we have
(3.12) b(m) —d(m) —v < —a/2 form > m.

Take 5 such that ys = m(5 + y). Then for all s > 5, there exists ) such that
x(t®) =m and x(¢) > m for r > ©®). Then, using (3.12), we have

x/(t)fys—x(t)(%a—ky) forr > 1.

Hence,

x() < nae—(a/2+y)(t—r<‘)) +ys /[ e a/2+y)(t=0) 4

'[(S)
__rs < vs_ —)e—(a/2+y>(r—r<f>) Vs
y+a/2 \y+a/2 Ty+a/2’
so that, using (2.18),
G(s) = li < Ii <
)= limm@) < Jim 20 = =70
and, hence,
. 14
lim G < <1,
5§—>00 (S)/S_ y+a/2

as stated above.

Turning now to the fixed points of G, note that G(0) = 0 and G is strictly
concave; hence, G(s) = s has, at most, one other solution in s > 0. Since
also limg_, oo G(s)/s < 1, it follows that there is a unique positive solution of
G(s)/s =1 if G'(0) > 1; otherwise, if G’(0) < 1, we have G(s)/s < 1 for all
s>0. O

The next result shows that assuming condition (H2) to be satisfied is not
restrictive, when looking for positive equilibria of (1.2).
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PROPOSITION 3.4. If (H2) is violated, there are no nontrivial equilibrium
solutions to (1.2).

PROOF. If y =0, the proposition follows immediately from the p° -equation
in (1.2). Otherwise, the process Z (%) is stochastically larger than a process Z Z®
which has b = by and a’ = ds for all j, and the same is true if b =boo — by

for any 0 < b, < bo. Letting m :=E Z,(S), note that, as for (3.6),
(3.13) ' (1) =m(){boe — by —doo —y —V}+ys=—m()(@ +y) +ys,

where a’ = a + b, and a is as in (3.11). Suppose now that a < 0, so that (H2) is
violated. If a < —y, choose b, so that a’ = —%y; otherwise, take b, = 0. Then it
follows from (3.13) that

G(s) = lim EZ = lim i) =s{y/(y +a)} > s,

for all s > 0, and there can be no s > 0 for which G(s) = s.

Finally, if @ = 0 and y > 0, then the condition ¢ < v of Theorem 2.3 is satisfied,
so that, from Theorem 2.4, the function G is strictly concave and G(0) = 0.
The argument above then gives G(s) > s for all s, which therefore precludes the
existence of any s > 0 with G (s) = s. This completes the proof. [

REMARK 3.5. From (2.31), we see that
* 0)
(3.14) G'(0) = y/o ED z? dr.

Thus, G’(0) is the average number of successful propagules produced in a patch
colonized by a single immigrant, before population extinction in that patch,
disregarding other colonizations. This number may be considered a reproduction
number for colonizers of an empty habitat, as used in epidemic models [9],
thus, G’(0) > 1 is the natural condition to ensure (meta)population persistence.
Indeed, a similar condition has been presented by Chesson [7] and Casagrandi and
Gatto [6]. See also [21], in which an analogous quantity is used as the invasion
fitness of a mutant; a discussion along their lines is, however, rather beyond the
scope of this paper.

Comparing the process Z,(O) with a process ’Z\t(o) which has b j =bo and d i =dp,
one immediately obtains

E(I)Zt(o) < e~V pbo—do—y)t
Hence, if
bo—dy—v <0,
one has G'(0) < 1.
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4. Convergence to equilibrium. In this section we prove the convergence
of the solutions of (1.2) to the unique positive equilibrium, when it exists, or
otherwise to the extinction equilibrium given by ¢ = (1,0, 0,...)”. Conditions
(H1) and (H2) are assumed to hold throughout the section. We begin with two
natural bounds on the mean patch size, the first of which bounds s(¢) away from
infinity.

LEMMA 4.1. Let p° > 0 and let

s(ty=Y_ jp;j(®).

j=0
Then

limsups(t) < +o00.
—00

PROOF. Multiplying both sides of (1.2) by i and summing for i from 1 to oo,
we obtain

4.1) S'()=Y_jbjpj(t) =Y jdjpj(t) —vs(t).
Jj=0 Jj=0

Note that, as in the previous section, the interchange of derivatives and sums
is justified, if po € D(A»), by the fact that the solution p(¢) € Cc'([0, T]; m") and
satisfies (3.4). By density, (4.1) then holds for all po € D(A).

Now, using the concavity of xb(x) and the convexity of xd(x) as in (3.8), we
have, from (4.1),

(4.2) s'(1) < {b(s (1)) — d(s (1)) — v}s (D).
By standard comparison arguments, we easily obtain

limsups(t) <s,
t—00

where
s=inf{s > 0:b(s) < d(s) + v}
The set is not empty because of (H2). [J

The next lemma gives the complementary comparison result, bounding s(¢)
away from 0 when G’(0) > 1 and p° # €°. Its proof is very much more difficult,
and is the subject of Section 5.

LEMMA 4.2. Let G'(0) > 1 and do, < +00. If p° € C, p° + e, then

liminfs(?) > 0.
[—00
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Now, if G'(0) > 1, let s* be the unique positive fixed point of G, as in
Theorem 3.1; if G'(0) < 1, let s* = 0. In the next two lemmas, we show that s(¢)
converges to s*.

LEMMA 4.3.  Under the same assumptions as in Lemma 4.1, we have

limsups(r) < s*.
1—00

PROOF. Assume, if possible, that

limsups(r) =35 > s*.
—00
From the proof of Theorem 3.1, we then have G(s) < 5. Choose & such that
G (5 + ¢€) < 5, and then choose fy such that s(¢) <5 + € for all # > ¢.

If we take s(¢) as a fixed given function, we see that the solution of (1.2) can
be interpreted as the distribution of an immigration, birth, death and catastrophe
process Z(¢) with time varying immigration rate s(¢), starting at time fg with
distribution p(fp). By an easy stochastic comparison (see [3]), that process is
dominated in 7 > #o by a process Z®*®) with constant immigration rate § + &
and with the same initial condition p(#p). In Theorem 2.3, it is shown that Z (5+e)
is positive recurrent and that its equilibrium distribution has finite mean G (s + ¢)
as in (3.2); furthermore, from Theorem 2.3 and from (2.19) with § = 0, it follows
that
(4.3) lim EZST® 1) = GG +¢)

—00
if ijl Jpj(to) < 0o, true for all po € D(A) because of Theorem A.
Hence, if p(t) is the distribution of Z(¢), we have, using also (2.18),

o0
limsup Y jp;j(1) <G +¢) <35.

t—00 =

On the other hand, p(z) is the solution of (1.2) and s(¢#) was defined as
Z?O:o Jp;j(t). The previous inequality thus reads

o
limsup s(¢) = limsup Z Jjpj) <s,
=00 [—>00 ]:1

contradicting s = limsup,_, ., s(¢). U

The companion result is as follows.

LEMMA 4.4. Let G'(0) > 1 and ds, < +00. If p° € C, p° # eq, then

liminfs(z) > s*.
t—00



A METAPOPULATION MODEL 1327

PROOF. Assume, if possible, that
liminfs(t) =5 < s™.
—00

Then, from Lemma 4.2, we have 0 < § < s*. Since G(5) > 5, as seen in the proof
of Theorem 3.1, we can choose ¢ such that G(5s — ¢) > 5.

As in the proof of Lemma 4.3, choosing #y such that s(#) > s — ¢ for all
t > tg, we can compare the process with immigration rate s(¢) to the process with
immigration rate s — ¢. In this way, we obtain

0
htgg.}fs(t) :I%Eérolle Jpj®) =G —¢) >,
j:

reaching a contradiction. [J
Combining these lemmas, we can prove the following theorem.

THEOREM 4.5. Let (H1) and (H2) hold, and let po e C\ {eo}. Then the
solution of (1.2) converges to the unique positive equilibrium, if G'(0) > 1 and
doo < +00, and to € if G'(0) < 1.

PROOF. The previous lemmas together yield
lim s(t) =s*.
t—00

Now, the interpretation of p(¢) as the distribution at time ¢ of an immigration, birth,
death and catastrophe process Z with immigration rate ys(¢) shows, as in the proof
of Lemma 4.3, that p(¢) is asymptotically bounded between the distributions of the
processes Z67=8) and Z6"+8) for any ¢ > 0; that is, for any [ > 0,

(*—e) o . . . (s*+e)
an ShtrggoleP](I)Sllgigpzpj(t)fznj :
i1 j>l Jj=>1 Jj=l

But Theorem 2.4 implies the continuity in s of 7 ) ( f) with f = 1[7,00), proving
the theorem. [

REMARK 4.6. The condition dso < 400 is used in the proof of Lemma 4.2.
There is no reason to suppose that it is necessary for Theorem 4.5 to be true, but
our proof makes essential use of it.

5. Repulsion from the extinction equilibrium. The aim of this section is to
prove Lemma 4.2. To do so, we employ a result from the theory of persistence,
which we now recall.

Let X be a metric space (with metric d) which is the disjoint union of two sets
X1 and X5, and suppose that ® is a continuous semiflow on X . Thieme [25] gives
the following definitions:
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o X7 is aweak repeller for X1 if

limsupd(®;(x1), X2) >0 Vxi € X;.

t—00

e X» is a uniform weak repeller for X if there exists & > 0 such that

limsupd(®;(x1), X2) > ¢ YxeX;.
=00

e X» is a strong repeller for X if

liminfd(CD,(xl),Xz) >0 Vxi €Xy.
1—>00

e X» is a uniform strong repeller for X if there exists € > 0 such that

litminfd(d>,(x1),X2) >¢ Vx € X.
—00

In our application, the space X will be the convex set

o0
C:{peml:pzo, ijzl
j=0

with

o
d(p.q) =1po—qol + ) jlp; —4jl.
j=1
and the continuous semiflow ®;(p) = & (¢, p) is given by the solution p(¢) of (1.6)
with p(0) = p. We take X» to be {¢°} and X := C \ {¢"}; with these definitions,
the thesis of Lemma 4.2 is that X3 is a strong repeller for X.
To prove the lemma, we use Theorem 6.2 of [25], which we state in a form
simplified to our present needs.

THEOREM B ([25]). Let X be a metric space which is the disjoint union of the
two sets X1 (open in X) and X3; let ® be a continuous semiflow on X|. Assume
the following:

(A) There exists a subset Y1 C X1 such that, for all x € X1, there exists t (x) > 0
such that ®©;(x) € Yy forall t > t(x).
(Cs,1) Foranyy €Yy, the orbit ([0, 0o) x {y}) has compact closure.
(Cs.,2) Uerlw()’) has compact closure, where, as usual, w(y) is the w-limit set.
(R) The set Y1 N{x € X; d(x, X2) = ¢} is bounded.

Then X5 is a uniform strong repeller whenever it is a uniform weak repeller.
We prove that X» is a uniform weak repeller, and then Theorem B lets us

conclude that X» is a (uniform) strong repeller, which is the thesis of Lemma 4.2.
To start with, we show that the assumptions of Theorem B are satisfied.
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Lemma 4.1 shows that, if we choose

Y1=[yrziyi§§},
i

then assumption (A) holds. Indeed, the proof of Lemma 4.1 shows that, if
y € Y1, then ®;(y) € Yy for all + > 0. Assumption (R) is immediate, because
X» is bounded. The following lemma establishes the other two assumptions of
Theorem B. For its proof, note that a set E C m! has compact closure if (and only
if) limy s o0 Z,‘;":N i|x;| = 0 uniformly for x € E; that s, if, given any ¢ > 0, there
exists N = N(¢) > 1 such that )2  i|x;| <& forallx € E.

LEMMA 5.1. If the continuous semi-flow ® is given by the solutions p(t)
of (1.6) and C, X| and X, are the sets defined above, then assumptions
(Ce.1) and (Ce2) hold.

PROOF. As in Section 4, observe that p(t) = ®,(y) is the distribution of an
immigration, birth, death and catastrophe process Z; with immigration rate s(¢)
starting at time O with distribution y. If y € Y, this is dominated by an
immigration, birth, death and catastrophe process Z;®) with constant immigration
rate § (because of the previous remark), whose transition probabilities we denote
by

pij(0) =P(2,V = j|Zo" =1).

Stochastic comparison then gives

(5.1) Yo <Y nYy yipin®) =) yi Y npin(t).
n=N n=N i=0 i=0 n=N

To estimate the right-hand side, we use (2.15) in Theorem 2.3; choosing § such
that ¢(1 4+ 8) < v, we obtain

— - I & 145 L iy, eni+s _ Ci
> nhin®) = 55 Do P hin() < 5BV (ZY) T <
n=N n=N

uniformly for all # > 0, where C; is a constant depending only on i. Note also that,
for 6 =0, (2.15) implies that

(5.2) > npjnt) =EV(Z,9) < K1 (j + D.
n=0

To prove (Cs,1), take y € Y7; choose ¢ > 0. Find N such that

o0

Yoiwi< -
i=N; 4K
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and pick N> such that Ny > (%)1/‘S fori =0,..., Ny; then N, is the required
constant. In fact, using (5.2), we obtain

[e¢) o0 Ny [ele) o0 00
Yovi Y npin® = yi Y npin®+ D vi D npin(t)
i=0 n=N; i=0 n=N; i=Nj n=N,

N C: 00 P N 00

i . .
<Y yi—s+ Yy ¥+ DKI<=) yi+2K1 Y iy <e.
, N. . 2 .
i=0 2 i=N; —0 i=N|

In order to prove (Ce 2), we prove that, for any ¢ > 0, there exists N = N(g) > 1
such that, for all y € Y, there exists fy = fo(y) such that

o0 o
Z nZyiﬁin(t) <e for all r > 1y.
n=N i=0

Indeed, assume that this is true, and take ¢ € w(y) for some y € Y. Then there
exists a sequence {f;} with #y — oo such that

0
(5.3) anpn(tk)—qn|—>0 as k — oo.
n=0

Take k such that #; > t9(y) and that the difference in (5.3) is less than . Then

o0 o0 o0
> ngn <Y nlpat) — gl + D palte)
n=N n=N n=N
0 o0 o0
<D nlpat) = gnl+ Y n Y yipin(t) < 2e,
n=0 n=N i=0

using also (5.1), so that (Ce 2) is proved.

Now choose § > 0 such that ¢(1 4+ §) < v, and recall as above that, for each i,
there exists C; < oo such that limsup,_, ., E(’)(Zt(s))”‘s < C;. Hence, for each i,
there exists 79(i) such that E?) (Z,)1+8 < 2¢; for all t > 1y and, hence, that

o0
Y npin(t) <2C;N7° forallt > 19(i).
n=N

Fix & > 0. Choose y € Y; and find N1 = N (e, y) such that
> i< o

yi < —,
i=N; 4K\

where K is as in (5.2); set fo(y) = max;—o,... n, to(i), and choose

.....

N = {48_1 max Ci}.

1<i<N;
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Then, for t > ty(y), we have

00 00 Ny 00 00 o]
Doyvi Y npin® =Y yi Y npin®+ D yi Y npint)
i=0 n=N i=0 n=N i=N;+1 n=N

N] P o
SZ)’IE-F > yili+ DK <e,
i=0 i=N;+1

proving (5.3). O

Now we prove that {¢°} is a weak repeller through linearization. Since we
restrict our considerations to vectors p(t) in the convex set C, we have po(t) =
1-— Z‘;‘; 1 pj(t). Hence, we need only examine the vector (p1, p2, ..)T. With a
slight abuse of notation, we now set

o0
X = x:(xl,xz,...)TEZI:Zﬂxﬂ <+oo}
j=1

with norm ||x|| = Z?’;l J1x;|, noting that ¢ now translates into the point 0 of X,
and we denote here by A and F the operators defined in (1.4)—(1.5) but restricted
to X, and using po =1 — Z?‘;l pj in the definition of F'. We then define X | to
be the nonnegative cone in X; note that X is the counterpart of the convex set C
defined above.

Equation

(5.4) p'=Ap+ F(p)

corresponding to (1.6) now has O as the equilibrium, corresponding to the
extinction equilibrium e¥ of (1.2). We again use ®,(u°) to denote the solution
of (5.4) satisfying u(0) = u. This corresponds to the semi-flow of Lemma 5.1,
except that we now neglect the Oth component. Note that the metric in the convex
set C is equivalent to the norm in X, since

o0
d(u,v) = |ug —vol + Y ilu; — vl

_(liu,.)z (S S

o0
<2 ilui —vil =2[lu —v|x,
i=1
while obviously ||u — v||x <d(u, v).
Note also that A is the generator of a defective Markov process, the process Z t(o)
of Section 2 restricted to the state space N\ {0}. In the rest of this section, we only
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consider processes with zero immigration rate; thus, when there is no ambiguity,
we drop the superscript () and denote by Z; the process with zero immigration
rate.

From the results of Section 2, one immediately sees that Z; is exponentially
absorbed at 0; more precisely, (2.13) with f = e and [ = s = 0 implies, in the
present notation, that

(5.5) el < Ce™
for some positive constants C and «. This implies that
{RA > —a} C p(A);

moreover, we have the representation

(5.6) (= 7"); =3 v Pji (),
J

where “”” denotes the Laplace transform and Pj; (¢) is P(Z; = i|Zo = j).
We now discuss the stability of the 0 equilibrium of (5.4) using the linearization
principle. We first note that

(5.7) F' O)u=gu)e YueX,
where
(5.8) pu)=y > juj

j

and e! = (1,0, 0,...)T. Since F’(0) is one-dimensional, hence, compact, the
essential spectrum [27] of A + F’(0) coincides with that of A, which, from (5.5),
is less or equal than —a. The type of the semigroup e(A+F 'O can then be
understood from the spectrum of A + F’(0).

Using (5.7), we can establish, through direct computation, the following result.

LEMMA 5.2. If A is in p(A), then A belongs to p(A + F’(0)) if and only if
o((A — A)~lel) £ 1. In that case,

p((r — A) ")

=1l
[—oG—Aylen ™~

(59 A—A—F©0) v=r—A) v+

On the other hand, if
(5.10) (= A)~lel) =1,
then M is an eigenvalue with corresponding eigenvector v= (. — A)"lel.
From this lemma, we see that an important role is played by the roots of (5.10)
in the half-plane {RA > —«a}. Using the representation (5.6) and standard results

on the Laplace transform, as used, for instance, in the theory of age-dependent
populations [16], we have the following:
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LEMMA 5.3. There exists, at most, one real root Ay > —a of (5.10). If
Ao exists, all the other roots A satisfy RA < Ag; if there is no real root, there are no
complex roots in {RA > —a}. In any strip {a < RA < b}, there are, at most, finitely
many roots.

Finally, if

1

Ro:= iPy;(0) :Zi/o Pyi(t)dt > [=]1,

then Ly > [=]0; on the other hand, if Ry < 1, if there is a real root Ly, it satisfies
Mo < 0.

REMARK 5.4. Note that
o0
Ry = Zi/ Py (t)dt = G'(0),
—~ Jo
1
with G as given in (3.2).

From here on we assume that Ry > 1. Hence, the real eigenvalue A is positive.
We denote by Ap, ..., Ax (with £ > 0) the other roots of (5.10) such that RA; >
0, and by Agq1,...,A, (With n > k) the roots such that RA; = 0. Since the
continuous spectrum (if it exists) of A + F’(0) is contained in {RA < —a}, we
can split the spectrum of A + F’(0) in three spectral sets o = {Ag, A1, ..., Ak},
0 ={Aks1,...,Aptand o ={A € (A + F'(0)):RA < 0}.

By standard results (see Theorem I11.6.17 in [17]), X can be split into the direct
sum of three subspaces X*, X¢ and X*, all invariant under A + F’(0). Moreover,
X" and X€¢ are finite-dimensional (X" includes at least vp, the eigenvector
corresponding to Ag, while X¢ may well consist only of 0). This would be enough
to establish the instability of the 0 equilibrium. However, we wish to prove that all
initial data u > 0, u # 0, are repelled away from 0, and this requires further work.

The following lemma uses the results of Bates and Jones [4] to establish the
existence of unstable and centre stable manifolds W* and W< for equation (5.4)
at 0. The conditions of their Theorem 1.2 are satisfied in view of Arrigoni’s results,
as summarized at the end of Section 1, together with (5.5) and the properties of the
eigenspaces discussed following Lemma 5.3.

Defining X = X¢ @ X¥, and letting P* and P“* denote the corresponding
projections, [4], Theorem 1.2 and its consequence (P3) yield the following result.

LEMMA 5.5. There exist a neighborhood U > 0 and Lipschitz functions
h':P"(U) — X and h® : P (U) — X" with h"(0) = (h")'(0) = h*(0) =
(h¢*) (0) = 0 such that

W = {u" + h" ") :u" € P*(U))
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is the unstable manifold (in U) of 0, and
WCS — {MCS + hCS (uCS) : MCS c PCS(U)}

is a centre-stable manifold.
Furthermore, there exists a neighborhood V. .C U of O such that, ifu® € V\ W,
then there exists T > 0 such that ®;(u°) ¢V.

The final statement of the lemma shows that, if a solution comes close enough
to 0 to be in the neighborhood V, and if it is then at a point not in W, then it
has to leave V at some later time. Hence, the limes superior of any solution curve
is necessarily positive, if it can be established that, for some ¢ > 0, no points of
X4+ N B except for 0 are in W, where B, denotes the ball of radius ¢ centred
at 0. If this is the case, then {0} is a uniform weak repeller for X \ {0} in the
system (5.4), which is equivalent to (€%} being a weak repeller for C \ {€%} in (1.6).
Applying Theorem B, Lemma 4.2 would then follow.

To show that indeed W N X N B, = {0} for some ¢ > 0, we begin by writing
the eigenprojections explicitly.

LEMMA 5.6. The projection Py on the eigenspace corresponding to Ag is
oo — A1)

¢'((ho — A)~leh)
The projection P* on X" is given by

Pov = (ho— A) " lel.

) £ o((. — A)~1v) e
P v:Pov—f—jX::lEﬁj 1_(/)((/\_A)_lel)(x—A) e dx,

where T'; is a circle around )\j that does not include other elements of the
spectrum.

PROOF. It follows from the construction of the projection operators as in
formula (I11.6.19) of [17] and from (5.9). [

Note that
00 oo
¢ (o —A)e') = —/ te M"Y i Pyi(t)dt <O.
0 :
i=1

On the other hand, it may well be ¢'((A; — A)~lely =0 when 1 < j <n, so that
the other projections may have a more complex form.
As a consequence, we immediately have the following result.

LEMMA 5.7. Ifve X, then o((Ag — A)~lv) =0.
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PROOF. The explicit representation of Py shows that if p((Ao — A)*1 v) #£ 0,
then Pyv # 0. However, v € X implies that Ppp =0. [

This lemma implies that X N X = {0}, because if v > 0 and v # 0, then
(Lo — A)~'v > 0 by (5.6); hence, it follows from (5.8) that ¢((hg — A)"'v) > 0
also. This is almost what we need, since W and X are close to one another
near 0, and we are thus close to showing that W N X, N B, = {0} for some
& > 0. To make the transition from X< to W<, we first show that, for v > 0,
(Ao — A)*lv) is large enough.

LEMMA 5.8.  Assume that doo < 00, and take v > 0. Then

_ lvll
5.11 Ao —A) " ) > )
(5.11) @((ro ) )_doo+y+v+ko

PROOF. We start from the identity
A oo .
SibiGo= [ e EDZ))dr.
, 0
l

An easy coupling argument shows that Z; is stochastically larger than a death-and-
catastrophe process with death rate d, + y. Hence,

/ e ME (Z)dt > / e~ G0ty ot g1 = :
0 0 A+ Yy +deo+V

Now, if v > 0, we have
o((ho— A) ') = iv; Pji(r0)
iJ
T J _ llvll ‘
T~ Aoty tdotv dotyFvtio O

Using the above lemma together with Lemma 5.7, we can now show that the
norm of v~ is quite large, whenever v € X°. Here, v~ denotes the negative part
of v:iv=2v"T — v, with (v"); = max{0, v;} and (v™); = max{0, —v;}.

LEMMA 5.9. Assume that deo < 00. If v € X, there exists n > 0 such that
o=l = nllvll.

PROOF. From Lemma 5.7, we have

0=0p((o—A) " "v) =0((ho — A)~"v") —p((ho—A)""v7)

[Caal e
> —[[Gho =AD"l Iv1l,
deo +y +Vv+ Ao
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using Lemma 5.8 and the obvious identity ||| = 1. Hence, using [[vt| =
vl — vl

)nvuz o),
deo +7 +V+ A0 deo +7 +V+ A0

which yields the thesis. [J

(Il(ko —AT )+

We now use this result, together with the closeness of X“* and W, to conclude
that W N X4 N B, = {0} for some ¢ > 0.

LEMMA 5.10. Assume that doo < 00. Then there exists € > 0 such that v > 0,
v € B N W implies v =0.

PROOF. First take § such that ||[v°|| < § implies ||A° (v°)|| < %Hv””. Then
take ¢ = §/|| P%|. Assume that v = v + A (v**) > 0 with |[v|| < &. Then it
follows that ||[v*|| = || P (v) | <.

Split v = (V)™ — (v°*)~. Then we have

o0 oo
Z iv,- — Z i[vl_c's+(hCS(UCS))i] S_Zi(vcs);+Zi|(hcs(vcs))i|
i:vf*<0 i <0 i=1 i=1
==+ 1A @I < —nllv? ] + gllvcsll,

using Lemma 5.8 and ||v®*|| < §. This contradicts with v > 0 unless v = v =0.
d

We have now proved what we need to show that {0} is a uniform weak repeller
for X, \ {0}. The details are as follows. We recall that we have Ry = G’(0) > 1.

LEMMA 5.11. Assume that doo < 00. Then there exists €y such that for all
u?>0,u’£0,

limsup [|®, (u®) || > &o.
r— 00

PROOF. Take
1 ... .
go=sminse, inf |v|,
o= dminfe. int ol

where ¢ is that of Lemma 5.10, while V is that of Lemma 5.5.

Assume that ||®; )| < 2g¢ for all + > #o. Since u® > 0, the invariance of
the positive cone under (5.4) gives ®,(u% > 0; moreover, ®,u?) # 0. Hence,
Lemma 5.10 implies that &, (u”) ¢ W¢. From Lemma 5.5, it then follows that
&, (u%) ¢ V for some T > 19, contradicting || ®; (u°)| < 2¢eg forall r > t9. O
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PROOF OF LEMMA 4.2. Going back to the semi-flow ®; on C, note that

d(®; (o), e®) =1 = po)| + Y ilpi =Y pi®) + Y ipi (1)

<2 ipi() = B wo) I,

j=1

while obviously

1D (uo) Il < d(®¢(up), ).

Hence, Lemma 5.11 states that {¢°} is a uniform weak repeller for C \ {€°}). But
now Theorem B, together with Lemma 5.1, yields Lemma 4.2. [J
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