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Abstract

We analyse here the Vaccine Model with Cross-Immunity proposed

by Porco and Blower [1]. Porco and Blower[1] show that vaccination

can shift the competitive balance in favour of a strain that, without

vaccination, would be out-competed and that vaccination can also pro-

mote coexistence of different strains, something that normally is not

expected [2]. Their results have been mainly obtained through numer-

ical simulations, so that the conditions under which a shift in com-

petitive balance or coexistence occurs have not been fully established.

We give a rather complete description of its behavior, at least in terms

of equilibria. We find the exact conditions under which vaccination

may lead to a shift in competitive balance and show that, under these

conditions, there always exist a range of vaccination rates under which

a coexistence equilibrium exists. We also find that a coexistence equi-

librium exists (and is unstable) in a ‘bi-stability’ region, where both
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monomorphic equilibria are stable. This fact has been rarely observed

in models of competition between pathogen strains.

Keywords: Vaccine Model, HIV, Cross-Immunity, Vaccination Rate, Coexistence

Equilibrium, Forward/Backward Bifurcation

1 Introduction

Control policies of infectious diseases can lead to unexpected outcomes when

the infectious agents consist of a variety of different strains. In fact, it has

often be argued that more pathogenic strains are in competition with less

pathogenic ones [2], so that the application of control policies may shift the

competitive balance in favour of the less fit strains [3, 4] that might however

be more virulent.

It has been observed in previous studies and in practice that vaccination, one

of the most powerful control policies, can have very dramatic effect on the

outcome of the competition between more pathogens. This topic has been

examined with the use of mathematical models in several papers [1, 5, 6, 7].

Vaccination can destabilize the existing host-pathogen evolutionary equilib-

ria, accelerate pathogen evolution and also lead to the emergence or domi-

nance of a once-rare pathogen, a mechanism also known as strain replace-

ment [8, 6, 7]. Vaccines differ for their mode of action; vaccines with differ-

ential effectiveness provide different degrees of protection against infection

by the different strains of the pathogen and their efficacy has been exten-

sively discussed in the literature [9, 10, 11, 7].

Porco and Blower [1] showed that vaccination can indeed shift the com-

petitive balance in favour of a strain that, without vaccination, would be

out-competed and that vaccination can also promote coexistence of different

strains, something that normally is not expected [2]. The results by Porco
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and Blower have been mainly obtained through numerical simulations and

only few analytical results have been obtained: these are explicitly recalled

at the beginning of Section 3 of this manuscript. In the original paper

[1] the complete conditions under which a shift in competitive balance or

coexistence occurs had not been fully established and here we aim to fill

this gap. With this work we investigate and get a better understanding of

the potential consequences of introducing a vaccine with differential effec-

tiveness against an infectious agent circulating in multiple strains within a

population, something that could be well suited to many sexually transmit-

ted infections like HIV, HPV (Human Papilloma Virus) and HSV (Herpes

Simplex Virus), although the model examined has been specifically designed

for HIV.

Here we examine in detail the “Vaccine Model with Cross-Immunity” or

“Differential Degree Model” proposed in Porco and Blower [1] to describe

the spread of 2 HIV strains and the subsequent progression into AIDS in

a population of potential sex partners. More in general, the model can

be thought as describing the spread of two competing pathogens within a

population in presence of vaccination and cross-immunity. We analyse the

impact of vaccination at the community level and give a rather complete

description of the model behavior, at least in terms of equilibria. We find

the exact conditions under which vaccination may lead to a shift in com-

petitive balance and also show that, under these conditions, there always

exist a range of vaccination rates under which a coexistence equilibrium ex-

ists. We find that the Coexistence Equilibrium may be stable or unstable,

depending on another condition. The former case corresponds to what had

already been observed numerically. In the latter case, the parameter region

in which a coexistence equilibrium exists is actually a ‘bi-stability’ region in
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which both monomorphic equilibria are stable, so that asymptotic behavior

depends on initial conditions. This fact, that would lead to a sort of hys-

teresis cycle if vaccination rates were increased then decreased, has rarely

been demonstrated in models of competition between pathogen strains.

2 Model Formulation

The “Vaccine Model with Cross-Immunity” proposed by Porco and Blower

[1] is a particular transmission dynamics model of HIV in presence of two

subtypes and a vaccine that provides a degree of protection against infection

by both subtypes.

The state variables are X (the number of susceptible individuals), V (the

number of effectively vaccinated individuals), Y1 and Y2 (the number of in-

dividuals infected with subtype 1 and subtype 2 respectively and have not

developed AIDS), A1 and A2 (the number of individuals who have been in-

fected with subtype 1 and subtype 2 respectively and have developed AIDS).

The state variables are supposed to be C1 functions of the time variable t.

Individuals are part of a community of potential sex partners and we assume

that individuals with AIDS do not acquire new sex partners. This means

that the sexually active community N is given by N = X + V + Y1 + Y2.

We assume that individuals enter the community at a constant rate π and a

fraction p of these are vaccinated. The vaccine induces a protective immune

response in a fraction e of the vaccinated individuals, that is the vaccine

takes only in a fraction pe of the new entries. Uninfected individuals either

not vaccinated or who were vaccinated but in whom the vaccine did not

take, are referred as being completely susceptible. The degree of protection

conferred by the vaccine against subtype i is indicated with ξi (0 6 ξi 6 1);

ξi = 0 corresponds to no protection and ξi = 1 corresponds to complete
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protection against infection. Individuals leave each class at a constant per

capita rate µ when they cease acquiring new sex partners. The transmission

probability of subtype i per partnership is indicated with βi, the number

of new sex partners per unit time is indicated by c, γi is for the rate of

progression to AIDS and α indicates the death rate due to AIDS.

X Y1 A1

V Y2 A2

π

1− pe

p

cβ1
XY1

N

cβ2(1− ξ2)
V Y2

N

γ1Y1

γ2Y2

cβ2
XY2

N

cβ1(1− ξ2)
V Y1

N

µ µ µ+ α

µ µ µ+ α

Figure 1: The flow chart of the model

The flow diagram in Figure 1 describes the dynamics of the “Vaccine

Model with Cross-Immunity”. The differential equations describing the cor-

responding dynamics are:

Ẋ = π(1− pe)− µX − cβ1X
Y1

N
− cβ2X

Y2

N
(1)

V̇ = πpe− µV − (1− ξ1)cβ1V
Y1

N
− (1− ξ2)cβ2V

Y2

N
(2)

Ẏ1 = cβ1X
Y1

N
+ (1− ξ1)cβ1V

Y1

N
− (µ + γ1)Y1 (3)

Ẏ2 = cβ2X
Y2

N
+ (1− ξ2)cβ2V

Y2

N
− (µ + γ2)Y2 (4)

Ȧ1 = γ1Y1 − (µ+ α)A1 (5)

Ȧ2 = γ2Y2 − (µ+ α)A2 (6)

where N = X + V + Y1 + Y2.

We observe that equations (1)–(4) are sufficient to describe the behavior
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of the system. Furthermore, these equations can be suitable for any infection

of SI type, where γ1 and γ2 denote disease-induced mortality rates, and

vaccination occurs at birth. The assumption of a constant (independent

of population size) input rate π in the population may then need to be

amended. We introduce the reproduction numbers [12]

R1
0 =

cβ1
µ+ γ1

R2
0 =

cβ2
µ+ γ2

. (7)

Briefly, the reproduction number R0 for a deterministic SIR-type model is

a threshold condition that determines the emergence (if R0 > 1) of an epi-

demic and represents the average number of cases generated by an infectious

individual at the beginning of an epidemic (i.e. when the whole population

is susceptible). In this work we are going to define different reproduction

numbers, which for clarity have been also summarized on Table 1. Then,

performing the change of variables

x =
X

N
v =

V

N
y1 =

Y1

N
y2 =

Y2

N

and using R1
0 and R2

0 as parameters, system (1)–(4) can be equivalently

written as

ẋ =
π

N
(1− x− pe)− x[(R1

0(µ+ γ1)− γ1)y1 + (R2
0(µ+ γ2)− γ2)y2] (8)

v̇ =
π

N
(pe− v)− v[(R1

0(µ+ γ1)(1− ξ1)− γ1)y1 + (R2
0(µ+ γ2)(1− ξ2)− γ2)y2](9)

ẏ1 = y1[R
1
0(µ+ γ1)(x+ (1− ξ1)v)− γ1(1− y1) + γ2y2 −

π

N
] (10)

ẏ2 = y2[R
2
0(µ+ γ2)(x+ (1− ξ2)v)− γ2(1− y2) + γ1y1 −

π

N
] (11)

Ṅ = π −N(µ+ γ1y1 + γ2y2) (12)

In (8), we have dropped the dependency on c, β1 and β2 using instead the

non-dimensional quantities R1
0 and R2

0 as parameters. It would be possible to
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reduce the parameters to a smaller number of non-dimensional quantities;

we prefer to keep them all, while later showing that different behaviours

depend on the ratios µ/γi and γ1/γ2.

By adding together (8)–(11) we get

ẋ+ v̇ + ẏ1 + ẏ2 = (
π

N
− γ1y1 − γ2y2)[1− (x+ v + y1 + y2)] (13)

Since

x+ v + y1 + y2 = 1

is invariant for (8)–(11), as intuitively obvious, we can drop (for instance)

the equation for v and consider the system











































Ṅ = π −N(µ+ γ1y1 + γ2y2)

ẋ =
π

N
(1− x− pe)− x[(R1

0(µ+ γ1)− γ1)y1 + (R2
0(µ+ γ2)− γ2)y2]

ẏ1 = y1[R
1
0(µ+ γ1)(x+ (1− ξ1)[1− (x+ y1 + y2)])− γ1(1− y1) + γ2y2 −

π

N
]

ẏ2 = y2[R
2
0(µ+ γ2)(x+ (1− ξ2)[1− (x+ y1 + y2)])− γ2(1− y2) + γ1y1 −

π

N
].

(14)

We can then obtain the fraction of vaccinated individuals by subtraction

v = 1− (x+ y1 + y2).

3 Existence and Stability of Equilibria

As mentioned above, Porco and Blower [1] present an extensive numerical

analysis of the model, showing for instance the equilibrium coexistence of

the strains for certain parameter values. From the analytical point of view

they discuss the Disease Free Equilibrium and the Equilibrium with only

one Subtype, thus finding

• the stability conditions of the Disease Free Equilibrium;
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• one necessary condition for the stability of The Subtype-1-Only Equi-

librium (i.e. condition (24) in this manuscript);

• the fact that if R1
0 > R2

0 > 1 and ξ1 ≤ ξ2, the Subtype-1-Only Equi-

librium is asymptotically stable, whenever it exists.

In order to make our presentation smoother, we are going to present a

complete analysis of the equilibria of the system, including the conditions

already found by Porco and Blower [1].

We study here the equilibria of (14); when this makes the derivation

shorter, we will consider also (8)–(11).

In the rest of the section we discuss in detail the conditions under which

the equilibria exist and are stable. The reader can find a summary of the

assumptions and the main results (in terms of model’s behaviour) obtained

in this section on Table 2.

Note first that, from (12), any steady state (x̃, ṽ, ỹ1, ỹ2, Ñ) of (14) satis-

fies

π

Ñ
= µ+ γ1ỹ1 + γ2ỹ2. (15)

The equilibria can be distinguished on the basis of whether ỹ1 and ỹ2 are

zero or positive.

3.1 Disease Free Equilibrium

3.1.1 Existence

The Disease Free Equilibrium (DFE) occurs when the fraction of infected

individuals is null y⋆1 = y⋆2 = 0 and there are positive fractions of susceptible

and vaccinated individuals x⋆ 6= 0, v⋆ 6= 0.

From (15), we obtain N∗ =
π

µ
. Setting the right-hand side of (8)–(9)
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equal to 0 with y⋆1 = y⋆2 = 0, we immediately obtain for the DFE

x⋆ = 1− pe and v⋆ = pe.

This is always a feasible solution under the constraints 0 ≤ p ≤ 1, 0 ≤ e ≤ 1

arising from their definition. Otherwise said, the DFE always exists.

3.1.2 Stability

We study the local stability of the DFE through the Jacobian matrix of

system (14) at the DFE (x⋆, 0, 0, N∗) = (1− pe, 0, 0, π
µ
). The eigenvalues of

the Jacobian at the DFE are

λ⋆
1 = −µ

λ⋆
2 = −µ

λ⋆
3 = (µ + γ1)

(

R1
0(1− pe) + (1− ξ1)R

1
0pe− 1

)

λ⋆
4 = (µ + γ2)

(

R2
0(1− pe) + (1− ξ2)R

2
0pe− 1

)

Therefore, the DFE is stable if and only if λ⋆
3 < 0 and λ⋆

4 < 0.

Rearranging the terms, the necessary and sufficient conditions for the DFE

to be stable can be written as











R1
p = R1

0(x
⋆ + (1− ξ1)v

⋆) < 1

R2
p = R2

0(x
⋆ + (1− ξ2)v

⋆) < 1.

(16)

or










R1
p = R1

0(1− ξ1pe) < 1

R2
p = R2

0(1− ξ2pe) < 1
⇐⇒











pe > peDF
1

pe > peDF
2

where














peDF
1 =

R1
0 − 1

R1
0
ξ1

peDF
2 =

R2
0 − 1

R2
0
ξ2

.

(17)
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Observe that if R1
0(1 − ξ1) > 1 or R2

0(1 − ξ2) > 1, then the DFE is never

stable.

Notice moreover that if










R1
0 < 1

R2
0 < 1

then the DFE is stable independently the choice of pe, ξ1 and ξ2.

For this reason we assume from now on that R1
0 > 1 and R2

0 > 1. Using

these, in all the rest of the paper let us assume, without loss of generality,

that

R1
0 > R2

0 > 1. (18)

3.2 Subtype-i-Only Equilibrium

3.2.1 Existence

We analyse here the Subtype-1-Only Equilibrium.

By definition, at the Subtype-1-Only Equilibrium there are no individuals

infected by subtype 2 (i.e. ȳ2 = 0) and there are positive fractions of indi-

viduals infected by subtype 1 (ȳ1 > 0), susceptible (x̄1 > 0) and vaccinated

individuals (v̄1 > 0).

Setting equal to 0 equation (10), together with (15) and ȳ1 > 0 = ȳ2, one

obtains

R1
0(x̄1 + (1− ξ1)v̄1) = 1. (19)

The equilibrium fractions of susceptible x̄1 can be computed by setting equal

to 0 the right hand side of (8) so that it can be expressed as function of ȳ1

as

x̄1 =
(µ + γ1ȳ1)(1− pe)

µ+R1
0
(µ+ γ1)ȳ1

(20)
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Substituting v̄1 = 1 − x̄1 − ȳ1 and (20) into (19) we obtain that ȳ1 must

solve G(ȳ1) = 1, where

G(y) = R1
0[ξ1

(µ+ γ1y)(1 − pe)

µ+R1
0
(µ+ γ1)y

+ (1− ξ1)(1− y)]

Since we assumed R1
0 > 1, we obtain

G′(y) = −
R1

0ξ1µ(1− pe)[R1
0µ+ (R1

0 − 1)γ1]

[µ +R1
0
(µ+ γ1)y]2

−R1
0(1− ξ1) < 0 (21)

and

G(1) =
R1

0(µ+ γ1)(1− pe)ξ1
R1

0
(µ + γ1) + µ

< 1

Hence, G(ȳ1) = 1 has a unique solution in (0, 1) if and only if

G(0) > 1 ⇐⇒ R1
0((1− pe)ξ1 + (1− ξ1)) = R1

0(1− ξ1pe) = R1
p > 1

We have then proved

Proposition 1. A sufficient and necessary condition for a Subtype-1-Only

Equilibrium to exist is R1
p > 1, i.e, pe < peDF

1 defined in (17). Moreover,

under the assumption R1
p > 1, the Subtype-1-Only Equilibrium is unique.

The equilibrium fraction of vaccinated individuals v̄1 can be computed

by setting equal to 0 the right hand side of (9) and it can be expressed as

function of ȳ1 as

v̄1 =
(µ+ γ1ȳ1)pe

µ+ (1− ξ1)R1
0
(µ+ γ1)ȳ1

(22)

For future use, we prove the following

Proposition 2. ȳ1 at the Subtype-1-Only Equilibrium is a decreasing func-

tion of pe on [0, peDF
1 ).
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Proof. We write explicitly the dependence of G on pe as G(pe, ȳ1(pe)) = 1.

Since by (21) we know that

∂G(pe, ȳ1(pe))

∂ȳ1
< 0

and also

∂G(pe, ȳ1(pe))

∂pe
= −

R1
0ξ1(µ+ γ1ȳ1)

µ+R1
0
(µ + γ1)ȳ1

< 0

by the Implicit Function Theorem we obtain

ȳ′1(pe) = −

∂G(pe, ȳ1)

∂pe
∂G(pe, ȳ1)

∂ȳ1

< 0 (23)

thus proving that ȳ1 is a decreasing function of pe.

Completely similar arguments lead us to state that a Subtype-2-Only

Equilibrium (x̄2, v̄2, 0, ȳ2) exists and is unique under the necessary and suf-

ficient condition R2
p > 1.

The equilibrium fractions of susceptible and vaccinated individuals at the

equilibrium are given by

x̄2 =
(µ+ γ2ȳ2)(1− pe)

µ+R2
0
(µ+ γ2)ȳ2

v̄2 =
(µ + γ2ȳ2)pe

µ+ (1− ξ2)R
2
0
(µ + γ2)ȳ2

where ȳ2 is the unique solution of equation H(ȳ2) = 1 where

H(ȳ2) = R2
0[
(µ + γ2ȳ2)(1 − pe)

µ+R2
0
(µ+ γ2)ȳ2

+ (1− ξ2)(1 − ȳ2)]

provided that R2
p > 1.

12



In terms of pe, we get that the Subtype-2-Only Equilibrium exists for

pe < peDF
2 where peDF

2 =
R2

0 − 1

R2
0
ξ2

.

Finally, with the same argument used above, it can be proved that ȳ2 is a

decreasing function of pe.

3.2.2 Stability

We examine now the stability of the Subtype-1-Only Equilibrium. In order

to do that, we consider the Jacobian matrix of (14) at the Subtype-1-Only

Equilibrium E1 = (N̄1, x̄1, ȳ1, 0) and obtain a matrix of the form:

J(E1) =







E F

0 R2
0(µ+ γ2)[x̄1 + (1− ξ2)v̄1]− (µ + γ2)







where E is the 3× 3 matrix

E =













−(µ+ γ1ȳ1) 0 −N̄γ1

(γ1 −R1
0(γ1 + µ))

x̄1ȳ1
N̄

−[µ+R1
0(µ+ γ1)ȳ1] −[R1

0(µ + γ1)− γ1]x̄1

(µ + γ1ȳ1)
ȳ1
N̄

R1
0(µ+ γ1)ξ1ȳ1 [γ1 −R1

0(µ + γ1)(1− ξ1)]ȳ1













We first show the following

Lemma 1. All the eigenvalues of E have negative real part.

The lemma implies that the Subtype-1-Only Equilibrium is always asymp-

totically stable when it exists (R1
p > 1) in absence of individuals infected

with subtype 2, as has been obtained in similar models with one strain and

vaccination [13]. Its proof is in the Appendix.

Since J(E1) is block-triangular, the set of eigenvalues of J(E1) is given
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by the union of the set of eigenvalues of E and

λ̄4 = R2
0(µ+ γ2)[x̄1 + (1− ξ2)v̄1]− (µ+ γ2)

Hence, the Subtype-1-Only Equilibrium is stable for (14) if and only if

λ̄4 = R2
0(µ+ γ2)[x̄1 + (1− ξ2)v̄1]− (µ+ γ2) < 0.

Rearranging the terms, the Subtype-1-Only Equilibrium is stable if and only

if

R2:1
p = R2

0(x̄1 + (1− ξ2)v̄1) < 1. (24)

We wish now to express (24) in terms of ȳ1 only. To this aim, one can

immediately insert (20) into (24). Instead, to obtain a simpler expression

that does not contain pe, we substitute (20) and (22) into (19) and obtain

R1
0(µ+ γ1ȳ1)

µ+R1
0
(µ+ γ1)ȳ1

(1−
peµξ1

µ+R1
0
(µ+ γ1)(1− ξ1)ȳ1

) = 1

and by algebraic manipulation of the expression we may write pe as function

of ȳ1

pe =
[R1

0(1− ȳ1)− 1][µ +R1
0(µ + γ1)(1 − ξ1)ȳ1]

R1
0
(µ + γ1ȳ1)ξ1

(25)

Substituting (25) into (20) we obtain the following expression for equilibrium

fraction of effectively vaccinated individuals

v̄1 =
R1

0(1− ȳ1)− 1

R1
0
ξ1

(26)
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Finally we obtain from (24)

R2:1
p = R2

0[x̄1 + (1− ξ2)v̄1]

= R2
0[x̄1 + (1− ξ1)v̄1 + (ξ1 − ξ2)v̄1]

= (using (19)) R2
0[

1

R1
0

+ (ξ1 − ξ2)v̄1]

=
R2

0

R1
0

[1 +
ξ1 − ξ2

ξ1
[R1

0(1− ȳ1)− 1]]. (27)

Summarizing, we have obtained:

Proposition 3. The Subtype-1-Only Equilibrium E1 = (N̄1, x̄1, ȳ1, 0) is

asymptotically stable [unstable] if R2:1
p < [>]1, where R2:1

p is given by ex-

pression (24) or (27).

We now wish to express condition R2:1
p < 1 in terms of pe.

If ξ1 ≤ ξ2, (27) implies that R2:1
p < 1. In other words, if ξ1 ≤ ξ2, the

Subtype-1-Only Equilibrium is asymptotically stable, when it exists.

Therefore, we study the condition R2:1
p < 1 under the additional assumption

ξ1 > ξ2 .

Since
(ξ1 − ξ2)

ξ1
R2

0ȳ1 > 0 and
R2

0

R1
0

< 1, expression (27) implies that

R2:1
p =

R2
0

R1
0

[1 +
(ξ1 − ξ2)

ξ1
R1

0 −
(ξ1 − ξ2)

ξ1
]−

(ξ1 − ξ2)

ξ1
R2

0ȳ1

<
R2

0

R1
0

[R1
0 −

ξ2
ξ1
R1

0 +
ξ2
ξ1
]. (28)

Recalling the definition (17), we see that

R2
0

R1
0

[R1
0 −

ξ2
ξ1
R1

0 +
ξ2
ξ1
] ≤ 1 ⇐⇒ peDF

2 ≤ peDF
1 ;
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hence inequality (28) shows that, if R1
0 > R2

0, ξ1 > ξ2 and peDF
2 ≤ peDF

1 ,

then R2:1
p < 1 for every value of 0 ≤ pe ≤ 1.

In order to find when R2:1
p > 1, we then require the assumptions

R1
0 > R2

0, ξ1 > ξ2 and peDF
2 > peDF

1 . (29)

Let us now set R2:1
p = 1 and find from (27) the corresponding fraction of

infected individuals

ȳBP
1 =

R1
0R

2
0(ξ1 − ξ2) +R2

0ξ2 −R1
0ξ1

R1
0
R2

0
(ξ1 − ξ2)

=
ξ1ξ2

ξ1 − ξ2

(

peDF
2 − peDF

1

)

. (30)

The superscript BP is related to the fact that this value corresponds to a

branching point of equilibrium curves, as will be seen later.

Because of the monotonic dependence of R2:1
p on ȳ1 (27), we have

R2:1
p < [>]1 ⇐⇒ ȳ1 > [<]ȳBP

1

By (25) and (30) we can compute the pe values at which branching occurs.

We see that R2:1
p = 1 for

peBP
1 = v̂

R1
0R

2
0(ξ1 − ξ2)[R

1
0(µ+ γ1)(1− ξ1) + µ] +R1

0(µ+ γ1)(1− ξ1)(R
2
0ξ2 −R1

0ξ1)

[R1
0R

2
0(ξ1 − ξ2)(µ+ γ1) + γ1(R2

0ξ2 −R1
0ξ1)]

(31)

where

v̂ =
(R1

0 −R2
0)

R1
0
R2

0
(ξ1 − ξ2)

. (32)

Since ȳ1 is a decreasing function of pe (see Proposition 2), we conclude

that

R2:1
p < [>]1 ⇐⇒ pe < [>]peBP

1
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By algebraic manipulation of (31), peBP
1 may be written as

peBP
1 =

(R1
0 −R2

0)

R2
0
(ξ1 − ξ2)

[1− ξ1 +
µξ1(R

2
0(1− ξ2)−R1

0(1− ξ1))

(Cγ1 + µR1
0
R2

0
(ξ1 − ξ2))

] (33)

where

C = R1
0R

2
0(ξ1 − ξ2) +R2

0ξ2 −R1
0ξ1. (34)

It is easy to see that

C > 0 ⇐⇒ peDF
2 > peDF

1 . (35)

To proceed, we use the following

Lemma 2. Assume (29).

a) If R2
0(1 − ξ2) > R1

0(1 − ξ1), then 0 < peBP
1 < 1 at least for µ/γ1 > 0

small enough.

b) If R2
0(1− ξ2) ≤ R1

0(1− ξ1), then peBP
1 ≥ 1 for all µ > 0.

The proof is in the Appendix.

The assumption R2
0(1− ξ2) > R1

0(1− ξ1) is then necessary for strain 2 to be

able to invade the Subtype-1-Only Equilibrium.

Summing up, necessary assumptions for having R2:1
p > 1 with pe ≤ 1 are























ξ1 > ξ2

peDF
2 > peDF

1

R2
0(1− ξ2) > R1

0(1 − ξ1)

(36)

We conclude the following
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Proposition 4. Under the assumption R1
0 > R2

0, if any of the conditions

(36) is violated, then the Subtype-1-Only Equilibrium is asymptotically stable

for all 0 ≤ pe ≤ 1 in which this equilibrium is defined. If all of (36)

are satisfied, then the Subtype-1-Only Equilibrium (when it is defined) is

asymptotically stable for 0 ≤ pe ≤ peBP
1 and unstable for pe > peBP

1 , where

peBP
1 is defined by (31) or (33). Under (36) the quantity peBP

1 < 1 at least

for µ small enough.

Completely similar (but reversed) arguments apply to the Subtype-2-

Only Equilibrium. It is asymptotically stable [unstable] if

R1:2
p = R1

0(x̄2 + (1− ξ1)v̄2) < [>]1.

As before, we may write R1:2
p as

R1:2
p =

R1
0

R2
0

[1 +
ξ2 − ξ1

ξ2
[R2

0(1− ȳ2)− 1]] (37)

Again, if we assume that R1
0 > R2

0, then (37) together with

v̄2 =
R2

0(1− ȳ2)− 1

R2
0
ξ1

> 0 (38)

implies that

ξ2 ≥ ξ1 =⇒ R1:2
p > 1.

That is, if R1
0 > R2

0 and ξ2 ≥ ξ1, then Subtype-1 invades the Subtype-2-Only

Equilibrium, wherever it exists.

Assume now ξ2 < ξ1 together with R1
0 > R2

0. By the same reasoning made

before, expression (37) implies

R1:2
p =

R1
0

R2
0

[1 +
ξ2 − ξ1

ξ2
(R2

0 − 1)] +
ξ1 − ξ2

ξ2
ȳ2 >

R1
0

R2
0

[R2
0 −

ξ1
ξ2
R2

0 +
ξ1
ξ2
]. (39)

18



The right hand side of (39) is greater or equal than 1, if and only if C ≤ 0

with C defined in (36) (alternatively, see Table 2). Hence

C ≤ 0 =⇒ R1:2
p > 1,

i.e. strain 1 invades the Subtype-2-Only Equilibrium whenever this exists.

To proceed, we also assume C > 0.

As before, we find the fraction of individuals infected with strain 2 at the

equilibrium corresponding to R1:2
p = 1:

ȳBP
2 =

R1
0R

2
0(ξ1 − ξ2) +R2

0ξ2 −R1
0ξ1

R1
0
R2

0
(ξ1 − ξ2)

=
C

R1
0
R2

0
(ξ1 − ξ2)

Notice that, since (37) is an increasing function of ȳ2 (remember ξ1 > ξ2),

we have

R1:2
p < 1 ⇐⇒ ȳ2 < ȳBP

2 .

Writing, analogously to (25), pe as function of ȳ2 as

pe =
[R2

0(1− ȳ2)− 1][µ +R2
0(µ + γ2)(1 − ξ2)ȳ2]

R2
0
ξ2(µ+ γ2ȳ2)

(40)

we see that R1:2
p = 1 for

peBP
2 = v̂

R1
0R

2
0(ξ1 − ξ2)[R

2
0(µ+ γ2)(1− ξ2) + µ] +R2

0(R
2
0ξ2 −R1

0ξ1)(µ+ γ2)(1 − ξ2)

[R1
0R

2
0(ξ1 − ξ2)(µ+ γ2) + γ2(R2

0ξ2 −R1
0ξ1)]

(41)

using the definition (32) for v̂.

Since ȳ2 is a decreasing function of pe (by the same argument that led to

Proposition 2), we conclude that

R1:2
p < 1 ⇐⇒ pe > peBP

2
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By manipulation of (41) we find that

peBP
2 =

(R1
0 −R2

0)

R1
0
(ξ1 − ξ2)

[1− ξ2 +
µξ2(R

2
0(1− ξ2)−R1

0(1− ξ1))

γ2C + µR1
0
R2

0
(ξ1 − ξ2)

]. (42)

Anagolously to Lemma 2, we have

Lemma 3. Assume (29).

a) If R2
0(1 − ξ2) > R1

0(1 − ξ1), then 0 < peBP
2 < 1 at least for µ/γ2 > 0

small enough.

b) If R2
0(1− ξ2) ≤ R1

0(1− ξ1), then peBP
2 ≥ 1 for all µ > 0.

The proof is identical to that of Lemma 2 and is skipped.

Symmetrically to Proposition 4, we obtain

Proposition 5. Under the assumption R1
0 > R2

0, if any of the conditions

(36) is violated, then the Subtype-2-Only Equilibrium is unstable for all 0 ≤

pe ≤ 1 in which this equilibrium is defined. If all of (36) are satisfied,

then the Subtype-2-Only Equilibrium is unstable for 0 ≤ pe ≤ peBP
2 and

asymptotically stable for pe > peBP
2 (when the equilibrium itself is defined),

where peBP
2 is defined by (41) or (42). Under (36) the quantity peBP

2 < 1

at least for µ small enough.

3.3 Coexistence Equilibrium

3.3.1 Existence

At the Coexistence Equilibrium completely susceptible (x̂ > 0), effectively

vaccinated (v̂ > 0), individuals infected by subtype 1 (ŷ1 > 0) and individ-

uals infected by subtype 2 (ŷ2 > 0) are all present in the community.
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Setting equal to 0 equations (10)–(11), together with (15) one obtains











R1
0[x̂+ (1− ξ1)v̂] = 1

R2
0[x̂+ (1− ξ2)v̂] = 1

(43)

The equilibrium fractions x̂, v̂ can be computed solving (43):

x̂ =
R2

0(1− ξ2)−R1
0(1− ξ1)

R1
0
R2

0
(ξ1 − ξ2)

v̂ =
R1

0 −R2
0

R1
0
R2

0
(ξ1 − ξ2)

(44)

Fraction v̂ is positive under the condition that

if Ri
0 > Rj

0
, then ξi > ξj

which means that the Coexistence Equilibrium exists only if the vaccine

induces a higher degree of protection against the subtype with the higher

fitness in a completely susceptible population.

Without loss of generality, let’s assume R1
0 > R2

0 and require ξ1 > ξ2.

The susceptible fraction x̂ is positive if and only if

R2
0(1− ξ2) > R1

0(1− ξ1)

By substitution of (44) into x̂+ v̂ < 1 one obtains

R1
0ξ1 −R2

0ξ2
R1

0
R2

0
(ξ1 − ξ2)

< 1 ⇐⇒ C > 0

where C is given by (34).

Conditions (36) are then necessary for the existence of a Coexistence Equi-

librium.
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Setting equal to 0 equations (8)–(9) together with (15) and using matrix

notation, one obtains

A







ŷ1

ŷ2






= µ







1− pe− x̂

pe− v̂






(45)

where

A =







R1
0(µ + γ1)x̂− γ1(1− pe) R2

0(µ+ γ2)x̂− γ2(1− pe)

R1
0(µ+ γ1)(1− ξ1)v̂ − γ1pe R2

0(µ+ γ2)(1 − ξ2)v̂ − γ2pe







System (45) admits a unique solution if and only if

|A| = µ[R2
0(µ+ γ2)(1− ξ2)v̂ −R1

0(µ+ γ1)(1− ξ1)v̂ + pe(γ1 − γ2)] 6= 0 (46)

Observation 1. If γ1 = γ2, then by (36) |A| > 0 for 0 ≤ pe ≤ 1.

Under the alternative assumption that |A| 6= 0, we can explicitly solve
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(45) by Cramer’s rule

ŷ1 =

∣

∣

∣

∣

∣

∣

∣

µ(1− pe− x̂) R2
0(µ + γ2)x̂− γ2(1− pe)

µ(pe− v̂) R2
0(µ+ γ2)(1− ξ2)v̂ − γ2pe

∣

∣

∣

∣

∣

∣

∣

|A|

=
peµ[γ2(x̂+ v̂)− (µ+ γ2)] + µv̂[R2

0(µ+ γ2)(1 − ξ2 + ξ2x̂)− γ2]

|A|

(47)

ŷ2 =

∣

∣

∣

∣

∣

∣

∣

R1
0(µ + γ1)x̂− γ1(1− pe) µ(1− pe− x̂)

R1
0(µ+ γ1)(1− ξ1)v̂ − γ1pe µ(pe− v̂)

∣

∣

∣

∣

∣

∣

∣

|A|

=
peµ[γ1(1− (x̂+ v̂)) + µ] + µv̂[γ1 −R1

0(µ + γ1)(1− ξ1 + ξ1x̂)]

|A|

(48)

We conclude the following

Proposition 6. Under the assumption R1
0 > R2

0, necessary conditions for a

Coexistence Equilibrium to exist are given by (36). Moreover, if γ1 = γ2 the

Coexistence Equilibrium is unique. If γ1 6= γ2 the Coexistence Equilibrium

is unique under the assumption that |A| 6= 0, where |A| is given by (46).

In order to find sufficient conditions for the existence of a positive equi-

librium, we start with the assumption |A| > 0.

By (48) one obtains that ŷ2 > 0 for

pe >
v̂[R1

0(µ + γ1)(1 − ξ1 + ξ1x̂)− γ1]

µ+ γ1(1− (x̂+ v̂))
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Substituting (44) and rearranging the terms one gets

pe > v̂

[R1
0(µ+ γ1)(1 − ξ1) +R1

0ξ1(µ+ γ1)
R2

0(1− ξ2)−R1
0(1− ξ1)

R1
0R

2
0(ξ1 − ξ2)

− γ1]

R1
0
R2

0
(ξ1 − ξ2)µ+ γ1[R1

0
R2

0
(ξ1 − ξ2)−R1

0
ξ1 +R2

0
ξ2]

pe > v̂
R1

0R
2
0(ξ1 − ξ2)[R

1
0(µ+ γ1)(1 − ξ1)− γ1] +R1

0ξ1(µ+ γ1)[R
2
0(1− ξ2)−R1

0(1− ξ1)]

R1
0R

2
0(ξ1 − ξ2)(µ+ γ1) + γ1(R2

0ξ2 −R1
0ξ1)

pe > v̂
R1

0R
2
0(ξ1 − ξ2)[R

1
0(µ+ γ1)(1 − ξ1) + µ] +R1

0(µ+ γ1)(1− ξ1)(R
2
0ξ2 −R1

0ξ1)

R1
0R

2
0(ξ1 − ξ2)(µ+ γ1) + γ1(R2

0ξ2 −R1
0ξ1)

(49)

By (31) inequality (49) can be written as

pe > peBP
1

Similarly, by (47), condition ŷ1 > 0 can be expressed in terms of pe

pe <
x̂v̂[R2

0ξ2(µ+ γ2)] + v̂[R2
0(µ+ γ2)(1− ξ2)− γ2]

µ+ γ2(1− (x̂+ v̂))

Substituting (44) and rearranging the terms one gets

pe < v̂
[R2

0(1− ξ2)−R1
0(1− ξ1)][R

2
0ξ2(µ+ γ2)] + [R2

0(µ+ γ2)(1 − ξ2)− γ2]

[R1
0
R2

0
(ξ1 − ξ2)(µ+ γ2) + γ2(R1

0
ξ1 −R2

0
ξ2)]

pe < v̂
R1

0R
2
0(ξ1 − ξ2)[R

2
0(µ+ γ2)(1 − ξ2)− γ2] +R2

0ξ2(µ+ γ2)[R
2
0(1− ξ2)−R1

0(1− ξ1)]

R1
0
R2

0
(ξ1 − ξ2)(µ+ γ2) + γ2(R2

0
ξ2 −R1

0
ξ1)

pe < v̂
R1

0R
2
0(ξ1 − ξ2)[R

2
0(µ+ γ2)(1 − ξ2) + µ] +R2

0(R
2
0ξ2 −R1

0ξ1)(µ+ γ2)(1− ξ2)

[R1
0
R2

0
(ξ1 − ξ2)(µ+ γ2) + γ2(R2

0
ξ2 −R1

0
ξ1)]

(50)

By (41) inequality (50) can be written as

pe < peBP
2

With similar (but reversed) arguments, one finds that under the assumption

|A| < 0, ŷ2 > 0 and ŷ1 > 0 for

peBP
2 < pe < peBP

1
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We have then proved the following

Proposition 7. Under the assumptions R1
0 > R2

0 and (36), sufficient and

necessary conditions for the Coexistence Equilibrium to exist are

(a) if |A| > 0, R1:2
p > 1 and R2:1

p > 1 (i.e. peBP
1 < pe < peBP

2 );

(b) if |A| < 0, R1:2
p < 1 and R2:1

p < 1 (i.e. peBP
2 < pe < peBP

1 ).

where peBP
1 and peBP

2 are given by (33) and (42) respectively.

3.3.2 Conditions for sub- or super-critical bifurcations

It is therefore relevant finding whether peBP
1 < peBP

2 or vice versa.

Lemma 4. Under the assumption R1
0 > R2

0 and (36), peBP
1 and peBP

2 , given

by (33) and (42), are decreasing functions of γ1 and γ2 respectively.

If γ1 ≥ γ2 then peBP
1 < peBP

2 .

If

R2
0(ξ1 − ξ2) ≥ ξ1 (51)

then peBP
1 < peBP

2 for all values of γ1 and γ2.

If R2
0(ξ1 − ξ2) < ξ1 then peBP

1 > peBP
2 for γ1 small enough, and γ2 large

enough.

Proof. The fact that peBP
1 and peBP

2 are decreasing functions of γ1 and γ2

is an immediate consequence of expressions (33) and (42) and assumptions

(36).

Consider now γ1 = γ2 = γ. With some simple algebraic manipulations,
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by substitution of equation (33) for peBP
1 and (42) for peBP

2 one obtains

peBP
2 − peBP

1 =
(R1

0 −R2
0)(1− ξ2)

R2
0
(ξ1 − ξ2)

−
(R1

0 −R2
0)(1 − ξ1)

R2
0
(ξ1 − ξ2)

+
µ(R2

0(1− ξ2)−R1
0(1− ξ1))

(Cγ + µR1
0
R2

0
(ξ1 − ξ2))

[

(R1
0 −R2

0)ξ2
R2

0
(ξ1 − ξ2)

−
(R1

0 −R2
0)ξ1

R2
0
(ξ1 − ξ2)

]

=
(R1

0 −R2
0)(R

2
0(1− ξ2)−R1

0(1− ξ1))(µ + γ)C

R1
0
R2

0
(ξ1 − ξ2)(Cγ + µR1

0
R2

0
(ξ1 − ξ2))

> 0.

From the fact that peBP
1 and peBP

2 are decreasing functions of γ1 and γ2

respectively, we may conclude that the inequality peBP
1 < peBP

2 holds also

for every γ1 > γ2.

As for the final claim, if lim
γ1→0

peBP
1 ≤ lim

γ2→+∞

peBP
2 , then peBP

1 < peBP
2

for all finite, positive γ1 and γ2.

Vice versa, if lim
γ1→0

peBP
1 > lim

γ2→+∞

peBP
2 , by continuity peBP

1 > peBP
2 over

some range of γ1 and γ2 values.

lim
γ1→0

peBP
1 =

(R1
0 −R2

0)

R2
0
(ξ1 − ξ2)

[

1− ξ1 +
ξ1(R

2
0(1− ξ2)−R1

0(1− ξ1))

R1
0
R2

0
(ξ1 − ξ2)

]

while

lim
γ2→+∞

peBP
2 =

(R1
0 −R2

0)(1 − ξ2)

R2
0
(ξ1 − ξ2)

.

Hence, with some algebra

lim
γ1→0

peBP
1 − lim

γ2→+∞

peBP
2

=
(R2

0(1− ξ2)−R1
0(1− ξ1))(R

1
0 −R2

0)

R1
0
R2

0
(ξ1 − ξ2)

(

−1 +
ξ1

R2
0
(ξ1 − ξ2)

)

.

This quantity is positive if and only if R2
0(ξ1 − ξ2) < ξ1, yielding the conclu-

sion of the proof.

Finally, we show
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Lemma 5. Under the assumptions R1
0 > R2

0 and (36), the following impli-

cations hold:

(a) if peBP
1 < peBP

2 , then |A| > 0 for all pe ∈ [peBP
1 , peBP

2 ];

(b) if peBP
2 < peBP

1 , then |A| < 0 for all pe ∈ [peBP
2 , peBP

1 ].

(c) if peBP
2 = peBP

1 , then |A| = 0 for pe = peBP
1 = peBP

2 .

where peBP
1 is given in (33) and peBP

2 is given in (42) (alternatively, see

Table 1).

Through a) and b), we will be able to draw a clear bifurcation pattern

(see for example [15]) of the system, with transcritical bifurcations occurring

at E1 for pe = peBP
1 , and at E2 for pe = peBP

2 .

Proof. We denote by |A|BPi the determinant of A computed with pe = peBP
i ,

i = 1, 2. Through simple, but tedious, algebraic manipulations, one arrives

at

|A|BP1 =
µ(R2

0(1 − ξ2)−R1
0(1− ξ1))(R

1
0 −R2

0)

R1
0
R2

0
(ξ1 − ξ2)

×

[

µ+ γ2 −
γ2µR

1
0ξ1

Cγ1 + µR1
0
R2

0
(ξ1 − ξ2)

+
γ1µR

1
0ξ1

Cγ1 + µR1
0
R2

0
(ξ1 − ξ2)

]

.

(52)

Through the computation of the derivative of |A|BP1, it is immediate to

see that |A|BP1 is an increasing function of γ1. We already know (Observa-

tion 1) that |A|BP1 > 0 for γ1 ≥ γ2.

Setting (52) equal to 0, we see that

|A|BP1 = 0 ⇐⇒ γ1 = Ψ1(γ2) (53)
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with

Ψ1(γ2) =
µ(γ2R

1
0(ξ1 −R2

0(ξ1 − ξ2))− µR1
0R

2
0(ξ1 − ξ2))

C(µ+ γ2) + µR1
0
ξ1

. (54)

If Ψ1(γ2) < 0, then |A|BP1 > 0 for all γ1 > 0. In particular Ψ1(γ2) < 0 for

all γ2 > 0 if R2
0(ξ1 − ξ2) ≥ ξ1, i.e. (51) holds.

Otherwise, |A|BP1 > 0 for γ1 > Ψ1(γ2) and |A|BP1 < 0 for γ1 < Ψ1(γ2).

Similarly, we obtain

|A|BP2 =
µ(R2

0(1 − ξ2)−R1
0(1− ξ1))(R

1
0 −R2

0)

R1
0
R2

0
(ξ1 − ξ2)

×

[

µ−
γ2µR

2
0ξ2

Cγ2 + µR1
0
R2

0
(ξ1 − ξ2)

+ γ1 +
γ1µR

2
0ξ2

Cγ2 + µR1
0
R2

0
(ξ1 − ξ2)

]

.

(55)

Again, through the computation of the derivative of |A|BP2 it is immediate

to see that |A|BP2 is a decreasing function of γ2 and

lim
γ2→∞

|A|BP2 =
µ(R2

0(1− ξ2)−R1
0(1− ξ1))(R

1
0 −R2

0)

R1
0
R2

0
(ξ1 − ξ2)

(

µ+ γ1 −
µR2

0ξ2
C

)

.

Hence, if

C(µ+ γ1) ≥ µR2
0ξ2 (56)

|A|BP2 > 0 for all γ2 > 0.

Otherwise, when (56) does not hold, setting (55) equal to 0, we see that

|A|BP2 = 0 ⇐⇒ γ2 = Ψ2(γ1) (57)

with

Ψ2(γ1) =
µ(γ1R

2
0(ξ2 +R1

0(ξ1 − ξ2)) + µR1
0R

2
0(ξ1 − ξ2))

µR2
0
ξ2 − C(µ+ γ1)

. (58)

We see that, if (56) does not hold, Ψ2(γ1) > 0, and |A|BP2 > 0 for

γ2 < Ψ2(γ1) and |A|BP2 < 0 for γ2 > Ψ2(γ1).
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Finally, we observe that the conditions for |A|BPi = 0, i = 1, 2, are actu-

ally the same; more precisely Ψ2(γ1) is the inverse of Ψ1, defined on the

appropriate domain. Indeed, solving the equation γ1 = Ψ1(γ2) for γ2, we

obtain

γ2 =
µ(γ1(C +R1

0ξ1) + µR1
0R

2
0(ξ1 − ξ2))

µR1
0
(ξ1 −R2

0
(ξ1 − ξ2))− Cγ1

= Ψ2(γ1)

where the last identity comes from the definition of C, so that

C +R1
0ξ1 = R2

0(ξ2 +R1
0(ξ1 − ξ2)) and R1

0(ξ1−R2
0(ξ1− ξ2)) = −C+R2

0ξ2.

Summarizing, we have obtained that if (51) does not hold, the function

γ2 = Ψ2(γ1) divides the plane into two regions (see Figure 2) such that

below and to the right both |A|BP1 and |A|BP2 are positive; above and to

the left both are negative.

|A|<0

|A|>0

g1
0 0,2 0,4 0,6 0,8 1,0

g2

0

20

40

60

80

100

Figure 2: The function γ2 = Ψ2(γ1) and the corresponding regions in the plane (γ1, γ2)
where cases (a) or (b) of Lemma 5 hold. Parameter values are R1

0 = 4, R2
0 = 2, µ = 1,

ξ1 = 0.9, ξ2 = 0.5.

Since |A| is an affine function of pe (see (46)), if it has the same sign at

both ends of a segment, it will have the same sign also within, yielding a)

and b).
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To show c), through long computations, one arrives at

peBP
2 − peBP

1 =
(R1

0 −R2
0)(R

2
0(1− ξ2)−R1

0(1− ξ1))C

R1
0
R2

0
(ξ1 − ξ2)

×
γ2(C(µ+ γ1)− µR2

0ξ2) + µR2
0(µR

1
0(ξ1 − ξ2) + γ1(R

1
0(ξ1 − ξ2) + ξ2))

(Cγ1 + µR1
0
R2

0
(ξ1 − ξ2))(Cγ2 + µR1

0
R2

0
(ξ1 − ξ2))

.

It is then easy to see that peBP
2 − peBP

1 = 0 if and only if γ2 = Ψ2(γ1).

We can now summarise the conclusions about the existence of the Co-

existence Equilibrium.

Proposition 8. Assume R1
0 > R2

0 and (36). Then there occur transcrit-

ical bifurcations at E1 for pe = peBP
1 , and at E2 for pe = peBP

2 with the

emergence of a positive coexistence equilibrium. Either

(a) peBP
1 < peBP

2 and the coexistence equilibrium is unique and feasible for

all pe ∈ [peBP
1 , peBP

2 ];

(b) peBP
2 < peBP

1 and the coexistence equilibrium is unique and feasible for

all pe ∈ [peBP
2 , peBP

1 ].

(c) peBP
2 = peBP

1 , and there is a continuum of positive equilibria for pe =

peBP
1 = peBP

2 .

If (51) holds, (a) is true for all values of γ1 and γ2.

Otherwise, (c) is true for γ2 = Ψ2(γ1); (b) is true for γ2 > Ψ2(γ1) > 0; (a)

is true for γ2 < Ψ2(γ1) and for all γ2 when Ψ2(γ1) < 0, where Ψ2(γ1) is

defined in (58).

Note that Ψ2(γ1) > γ1, so that, if γ1 ≥ γ2, (a) is always true.

30



3.3.3 Stability

It is easy to show that in case (b) the coexistence equilibrium is always

unstable. This can be proved by bifurcation theory, but can also be checked

directly using

Lemma 6. Let conditions (36) hold and let J be the Jacobian of (8)–(12)

computed at the coexistence equilibrium. Then

sign(|J |) = sign(|A|).

The proof is given in the Appendix.

It follows that in case (b), the Routh-Hurwitz stability conditions are vio-

lated, and the coexistence equilibrium is unstable.

As for case (a), bifurcation theory shows that the coexistence equilibrium is

asymptotically stable for pe close to peBP
1 and peBP

2 .

We were not able to prove that Routh-Hurwitz stability conditions are sat-

isfied for all pe ∈ (peBP
1 , peBP

2 ). We then performed a numerical study

drawing 1 million sets of parameters (R1
0, R2

0, ξ1, ξ2, γ1/µ, γ2/µ) satis-

fying conditions (36) and (51) or Ψ2(γ1) < 0 or γ2 < Ψ2(γ1). For each

such draw, we divided the (peBP
1 , peBP

2 ) interval into 10000 sub-intervals

and, for each value of pe in this mesh, computed, through standard routines

[16], the eigenvalues of the Jacobian at the coexistence equilibrium. All the

computed eigenvalues had negative real parts, suggesting that the coexis-

tence equilibrium never loses its stability through Hopf bifurcations in the

intervals (peBP
1 , peBP

2 ).
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4 Examples

The case peBP
1 < peBP

2 had already been numerically observed by Porco and

Blower [1]. In this case coexistence occurs in the parameter region where

the other existing equilibria are unstable. The case peBP
1 < peBP

2 occurs for

γ1 = γ2, γ1 > γ2 and may occur also for certain γ1 < γ2 as shown by the

following example.

Example 1: Let γ1 = 0.015 < γ2 = 0.517 and

R1
0 = 8.363, R2

0 = 3.790, µ = 0.423, ξ1 = 0.990, ξ2 = 0.020 and π = 1

By substitution into (17), (31) and (41) we get

peDF
1 = 0.888 peDF

2 = 36.496 peBP
1 = 0.153 peBP

2 = 0.552

The Subtype-1-Only Equilibrium is stable for 0 ≤ pe < 0.153, the Subtype-

2-Only Equilibrium is stable for 0.552 < pe ≤ 1 and the Coexistence Equi-

librium exists into the range 0.153 < pe < 0.552, where the DFE, the

Subtype-1-Only and the subtype-2-Only Equilibria exist but are unstable.

Numerical computation of the eigenvalues of the linearized system confirm

that the Coexistence Equilibrium is stable where it exists. Figure 3 shows

the equilibrium fractions y1 and y2 as function of parameter pe.
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Figure 3: Equilibrium fractions y1 and y2 as function of pe for fixed γ1 = 0.015, γ2 =
0.517, R1

0 = 8.363, R2
0 = 3.790, µ = 0.423, ξ1 = 0.990, ξ2 = 0.020, π = 1. Coexistence of the

strains occurs for 0.153 < pe < 0.552.

The case peBP
1 > peBP

2 had never been observed before. In this case the

Coexistence Equilibrium exists in a ‘bi-stability’ region in which both the

Subtype-1-Only and the Subtype-2-Only Equilibrium are stable and hence

the asymptotic behavior of the system depends on the initial conditions.

This latter case occurs only for certain γ1 < γ2.

Example 2: Consider the case γ1 = 0.026 < γ2 = 0.966 and let

R1
0 = 4.723, R2

0 = 2.293, µ = 0.235, ξ1 = 0.923, ξ2 = 0.650 and π = 1.

By substitution into (17), (31) and (41) we get

peDF
1 = 0.853 peDF

2 = 0.866 peBP
1 = 0.829 peBP

2 = 0.822

The DFE is stable for pe > 0.866, the Subtype-1-Only Equilibrium is stable

for 0 < pe < 0.829 and the Subtype-2-Only Equilibrium is stable for 0.822 <
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pe < 0.866. The Coexistence Equilibrium exists for 0.822 < pe < 0.829 and

is unstable. Figure 4 shows the equilibrium fractions y1 and y2 as function of

parameter pe. Figure 5 shows two trajectories for the equilibrium fractions

y1 and y2 starting close to the Coexistence Equilibrium at pe = 0.8234 and

converging one to the Subtype-1-Only Equilibrium and the other to the

Subtype-2-Only Equilibrium. The bifurcation and trajectory graphs have

been obtained by the graphical package MatCont of the MATLAB software.
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0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

pe

BPBPBP
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Figure 4: Equilibrium fractions y1 and y2 as function of pe for fixed γ1 = 0.026, γ2 =
0.966, R1

0 = 4.723, R2
0 = 2.293, µ = 0.235, ξ1 = 0.923, ξ2 = 0.650, π = 1. A bi-stability

region occurs for 0.822 < pe < 0.829; in this region unstable coexistence of the strains
occurs.
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Figure 5: Trajectories of the fractions y1 (left panel) and y2 (right panel) as functions of
time; parameter values are γ1 = 0.026, γ2 = 0.966, R1

0 = 4.723, R2
0 = 2.293, µ = 0.235, ξ1 =

0.923, ξ2 = 0.650, π = 1 and pe = 0.8234. Both trajectories start close to the Coexis-
tence Equilibrium x = 0.148, y1 = 0.007, y2 = 0.022, N = 3.896; the starting point of
the red one, converging to the Subtype-1-Only Equilibrium, is (0.148, 0.010, 0.029, 3.896);
the starting point of the blue one, converging to the Subtype-2-Only Equilibrium, is
(0.148, 0.007, 0.029, 3.896).

5 Discussion

In this manuscript we have analysed a model for competition between two

viral strains with complete cross-immunity and imperfect vaccination. The

model was first proposed by Porco and Blower [1] for different HIV strains;

the authors showed through simulations the possibility that vaccination

shifted the competitive hierarchy, with potential side-effects on public health.

Here we have examined the same model in greater detail, finding for

instance the exact conditions under which vaccination may lead to coexis-

tence of two strains; these are given by (36). It is worth commenting on

their biological interpretation.

The first ξ1 > ξ2 means that the vaccine reduces more the susceptibility

to the strain with the higher reproduction number (the better competitor

in absence of vaccination) since we assumed R1
0 > R2

0.
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The second condition peDF
2 > peDF

1 specifies that it is harder to eradi-

cate through vaccination strain 2 than strain 1, if they are the only strains

present. Writing the condition as

ξ2
ξ1

<
R1

0(R
2
0 − 1)

R2
0
(R1

0
− 1)

it specifies that the ratio of susceptibilities under vaccination must be de-

creased sufficiently relative to a ratio of reproduction numbers.

The third condition R2
0(1 − ξ2) > R1

0(1 − ξ1) means that, if every indi-

vidual were vaccinated, the second strain would have a higher reproduction

number (note that the third condition implies the first one, which is then

pleonastic).

Under these conditions there always exists a range of vaccination rates

under which a (unique) coexistence equilibrium exists, at least if µ/γi is

small enough, i.e. natural mortality is sufficiently lower than that induced

by the infection (or, in case of HIV, than the rate of progressing into AIDS).

The relative values of γ1 and γ2 (i.e., of the expected lengths of sojourn

in the classes I1 and I2) determine the ordering between peBP
1 given by (31)

and peBP
2 given by (41). This in turn affects the qualitative behavior of

system (14).

The case peBP
1 < peBP

2 had already been numerically observed [1]. In this

case, coexistence occurs in the parameter region where all the other equilib-

ria are unstable. Numerically, we found that the coexistence equilibrium is

asymptotically stable for parameter values in this region, but the possibility

of destabilization via Hopf bifurcations cannot be totally excluded, since an

analytical proof is missing. The unconditional stability of the coexistence

equilibrium has been proven in another model with coexistence of totally
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cross-immune pathogen strains [17].

On the other hand, the case peBP
1 > peBP

2 is also possible, giving rise

to phenomena that had not been anticipated. In this case there exists a

parameter region in which both monomorphic equilibria (i.e. the Subtype-

1-Only and the Subtype-2-Only Equilibrium) are stable and the coexistence

equilibrium exists unstable (see Figure 4). In this ‘bi-stability’ region the

asymptotic behavior of system (8)–(12) depends on the initial conditions.

The presence of the bi-stability region implies that, with a gradual increase

of vaccination rates, one may encounter a sudden shift from a situation with

only strain 1 present in appreciable proportion, to one with only strain 2.

Moreover, decreasing again vaccination rates, one would see a hysteresis-

type behavior.

As shown in the main text, bi-stability may occur only if γ1 < γ2. This

means that the mortality rate (or rate of developing AIDS, in case of HIV)

must be larger for strain 2 (the one that is out-competed without vaccina-

tion) than for strain 1. In other words, bi-stability may occur only if vacci-

nation shifts the competitive balance in favour of a more virulent strain, a

rather unpleasant scenario [18].

The results obtained in this work depend on the simplifying assumption

that co-infection does not occur (i.e. the vaccine confers complete cross-

protection). Several models have been proposed that weaken this assump-

tion; the simplest alternative is to allow for super-infection [6, 22], i.e. an

individual infected with one strain gets infected with another strain which

may lead to an instantaneous (if we neglect the inevitable phase during

which the two strains will coexist in the individual) replacement of the in-

tial strain. It has been known for a long time [21] that with super-infection

strain coexistence is possible even without vaccination; in this case, strain
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replacement may be induced by vaccination even without the vaccine being

differential effective [7]. This case bears some differences from the one ex-

amined here, but it can be expected that strain coexistence or exclusion can

be analysed along the same lines.

Much more intricate is the case with co-infection, i.e. an individual is

infected with several strains at the same time, whether this occurs because

of new infections [22] or because of within-host virus mutations, as usual

for HIV [23]. It is intuitive that, in this case, strain coexistence without

vaccination would be usual, but mathematical models accounting for such

phenomena, and amenable to analytical methods, are still at a preliminary

stage [24]. Exploring the effect of a vaccine with differential effectiveness in

a model allowing for co-infection is a fundamental and fascinating issue, but

goes beyond the scope of this work and the techniques used here.

The model is definitely not realistic for HIV, mainly because its structure

implies that the duration of the infectious stage is exponential, which is

certainly not plausible, whether infectious are treated or not. However,

the results obtained in this paper can be generalized, at least as far as the

existence of equilibria is concerned, to more realistic distributions for the

infectious period, as we show next.

Let γi(θ) be the exit rate from the class Yi for individuals that have spent

time θ in the class. This corresponds to a distribution of infectious period

Ti given by

P (Ti ≥ θ) = Γi(θ) := exp{−

∫ θ

0

γi(s) ds} (59)

conditional on having survived natural mortality. Assume also that the

infectiousness depends on the time since infection through a function φ(θ).

Denote Yi(t, θ) the number of individuals infected at time t by Subtype-i
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for a time period of length θ and let’s set

Qi(t) =

∫

+∞

0

φ(θ)Yi(t, θ)dθ. (60)

Analogously to (1)–(4), we assume that the rate of new infections with

Subtype-i (with i = 1, 2) at time t is given by

cβiX(t)
Qi(t)

N(t)
.

Under these assumptions, the dynamics described in Figure 1 lead to

Ẋ = π(1− pe)− µX − cβ1X
Q1

N
− cβ2X

Q2

N
(61)

V̇ = πpe− µV − (1− ξ1)cβ1V
Q1

N
− (1− ξ2)cβ2V

Q2

N
(62)

∂Y1

∂t
+

∂Y1

∂θ
= −

(

µ+ γ1(θ)
)

Y1(t, θ) (63)

∂Y2

∂t
+

∂Y2

∂θ
= −

(

µ+ γ2(θ)
)

Y2(t, θ) (64)

Ṅ = π − µN −

∫

+∞

0

γ1(θ)Y1(t, θ)dθ −

∫

+∞

0

γ2(θ)Y2(t, θ)dθ (65)

where

N = X + V +

∫

+∞

0

Y1(t, θ)dθ +

∫

+∞

0

Y2(t, θ)dθ (66)

and with

Yi(t, 0) = cβi
Qi

N

(

X + (1− ξi)V
)

, i = 1, 2. (67)

We show here that, under a proper re-parameterization, an equilibrium so-

lution of (61)–(67) satisfies equations (15), (43) and (45).

Let’s denote the equilibrium fractions of susceptible, vaccinated and infected

individuals respectively by

x̃ =
X̃

Ñ
, ṽ =

Ṽ

Ñ
and ỹi =

Λ̃i

Ñ
(68)
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where

Λ̃i = cβi
Q̃i

Ñ

(

X̃ + (1− ξi)Ṽ
)

, i = 1, 2. (69)

A solution of (63)-(64) independent of t is given by

Ỹi(θ) = Λ̃ie
−µθΓi(θ), i = 1, 2 (70)

where Γi(θ) is defined in (59). By substitution of (70) into (65), we ob-

tain that a solution of (61)-(65) has to satisfy equation (15), using γ̃i =
∫

+∞

0
γi(θ)e

−µθΓi(θ)dθ in place of γi, i = 1, 2.

From (68) and (60) it follows that

Q̃i

Ñ
=

Λ̃i

Ñ

∫

+∞

0

φ(θ)e−µθΓi(θ)dθ (71)

From (69) it follows that

Λ̃i = cβi
Q̃i

Ñ

(

X̃ + (1− ξi)Ṽ
)

, i = 1, 2 (72)

and by substitution of (71) into (72) one obtains that a steady state has

to satisfy equations (43), where Ri
0 = cβi

∫

+∞

0
φ(θ)e−µθΓi(θ)dθ, i = 1, 2.

Finally, one can show that equations (61)-(62) can be written as (45).

Thus, using the parameterization and the new definitions given here, all

results concerning existence of equilibria are still valid. Stability is more

delicate: Thieme and Castilo-Chavez [19] have proved that, with variable

infectiousness, the endemic equilibrium can be unstable even with a single

strain and no vaccination.

The model can also be applied to many other diseases of S-I type caused

by infectious agents circulating (at a population-level) in multiple-types or

sub-types, as long as one can assume that the entrance in the community
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(with or without vaccination) is constant. It is a reasonable assumption at

least for time-scales of the order of several years. For instance, system (14)

could be well suited to study the spread of two of the nearly 200 identi-

fied types of Human Papilloma Virus (HPV) at a population-level [20]. Of

course the model should be adapted to the specific disease taken into con-

sideration; in the case of HPV, for instance, we should account for the fact

that mortality due to infection is negligible and that immunity may be lost,

thus slightly changing the structure of the model. The exact results would

then depend on the appropriate model chosen, but we expect our analysis to

be of help in shedding light on the behaviour of similar models and to be of

interest for the analysis of several emerging and re-emerging fatal infectious

diseases.
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A Appendix

A.1 Proof of Lemma 1

Proof. The characteristic polynomial of E (after a change of sign) can be

written as

λ3 + a1λ
2 + a2λ+ a3 = 0 (73)

Routh-Hurwitz criterion states that all solutions of (73) have negative real

part if and only if a1, a2, a3 > 0 and a1a2 − a3 > 0 [14].

If we set

K = R1
0(µ + γ1)(1− ξ1)ȳ1

L = R1
0(µ + γ1)ȳ1

after some computations (see section “Computation of the Routh-Hurwitz

coefficients” below) we obtain

a1 = 2µ +K + L

a2 = (µ + L)(µ +K) + [R1
0(µ+ γ1)− γ1]Lξ1x̄1 + (µ+ γ1ȳ1)K

a3 = [R1
0(µ+ γ1)− γ1]Lµξ1x̄1 + (µ+ γ1ȳ1)(µ+ L)K

a1a2 − a3 = (µ + L)(µ +K)(2µ + L+K) + [R1
0(µ + γ1)− γ1]Lξ1x̄1(µ+ L+K) +

+(µ+ γ1ȳ1)(µ+K)K.

Since R1
0 > 1 and hence R1

0(µ + γ1) > γ1 all these quantities are positive,

thus proving that Routh-Hurwitz conditions are satisfied.
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A.1.1 Computation of the Routh-Hurwitz coefficients

We report here the computations of a1, a2, a3 and a1a2 − a3 that lead us to

prove that the Subtype-1-Only Equilibrium is stable, wherever it exists.

Remind that we set

K = R1
0(µ+ γ1)(1− ξ1)ȳ1

L = R1
0(µ+ γ1)ȳ1

The following equalities hold

a1 = (µ+ γ1ȳ1) + [µ+R1
0(µ+ γ1)ȳ1]− γ1ȳ1 +R1

0(µ+ γ1)(1− ξ1)ȳ1

= µ+ µ+R1
0(µ+ γ1)ȳ1 +R1

0(µ+ γ1)(1− ξ1)ȳ1

= 2µ+K + L

a2 = (µ+ γ1ȳ1)[µ+R1
0(µ+ γ1)ȳ1]− [µ+R1

0(µ+ γ1)ȳ1][γ1ȳ1 −R1
0(µ+ γ1)(1− ξ1)ȳ1]

+ [R1
0(µ+ γ1)− γ1]R

1
0(µ+ γ1)ξ1x̄1ȳ1 − (µ+ γ1ȳ1)[γ1ȳ1 −R1

0(µ+ γ1)(1 − ξ1)ȳ1] + (µ+ γ1ȳ1)γ1ȳ1

= [µ+R1
0(µ+ γ1)ȳ1][µ+R1

0(µ+ γ1)(1 − ξ1)ȳ1] + [R1
0(µ+ γ1)− γ1]R

1
0(µ+ γ1)ξ1x̄1ȳ1+

+ (µ+ γ1ȳ1)R
1
0(µ+ γ1)(1− ξ1)ȳ1

= (µ+ L)(µ+K) + [R1
0(µ+ γ1)− γ1]Lξ1x̄1 + (µ+ γ1ȳ1)K

a3 = (µ+ γ1ȳ1){[R
1
0(µ+ γ1)− γ1]R

1
0(µ+ γ1)ξ1x̄1ȳ1 − [µ+R1

0(µ+ γ1)ȳ1][γ1ȳ1+

−R1
0(µ+ γ1)(1− ξ1)ȳ1]}+ γ1N̄ [γ1ȳ1 −R1

0(µ+ γ1)ȳ1]R
1
0(µ+ γ1)ξ1

x̄1ȳ1
N̄

+

+ (µ+ γ1ȳ1)[µ+R1
0(µ+ γ1)ȳ1]

ȳ1
N̄

]

= (µ+ γ1ȳ1){[R
1
0(µ+ γ1)− γ1]R

1
0(µ+ γ1)ξ1x̄1ȳ1 − [µ+R1

0(µ+ γ1)ȳ1][γ1ȳ1+

−R1
0(µ+ γ1)(1− ξ1)ȳ1]} − [R1

0(µ+ γ1)− γ1]R
1
0(µ+ γ1)ξ1x̄1ȳ1γ1ȳ1+

+ (µ+ γ1ȳ1)[µ+R1
0(µ+ γ1)ȳ1]γ1ȳ1

= [R1
0(µ+ γ1)− γ1]Lµξ1x̄1 + (µ+ γ1ȳ1)(µ+ L)K
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a1a2 − a3 = [µ+R1
0(µ+ γ1)ȳ1][µ+R1

0(µ+ γ1)(1− ξ1)ȳ1][2µ+R1
0(µ+ γ1)ȳ1+

+R1
0(µ+ γ1)(1− ξ1)ȳ1] + [R1

0(µ+ γ1)− γ1]R
1
0(µ+ γ1)ξ1x̄1ȳ1[2µ+

+R1
0(µ+ γ1)ȳ1 +R1

0(µ+ γ1)(1− ξ1)ȳ1] + (µ+ γ1ȳ1)R
1
0(µ+ γ1)(1− ξ1)ȳ1[2µ+

R1
0(µ+ γ1)ȳ1 +R1

0(µ+ γ1)(1 − ξ1)ȳ1]− [R1
0(µ+ γ1)− γ1]R

1
0(µ+ γ1)ξ1x̄1ȳ1+

− (µ+ γ1ȳ1)[µ+R1
0(µ+ γ1)ȳ1]R

1
0(µ+ γ1)(1 − ξ1)ȳ1

= (µ+ L)(µ+K)(2µ+ L+K) + [R1
0(µ+ γ1)− γ1]Lξ1x̄1(µ+ L+K)+

+ (µ+ γ1ȳ1)(µ+K)K

A.2 Proof of Lemma 2

Proof. a) It is clear that, under the assumptions (29), if R2
0(1 − ξ2) > R1

0(1 − ξ1),

then 0 < peBP
1 . As for the other inequality, if µ = 0,

peBP
1 =

(R1
0 −R2

0)(1 − ξ1)

R2
0(ξ1 − ξ2)

and

(R1
0 −R2

0)(1 − ξ1)

R2
0(ξ1 − ξ2)

< 1 ⇐⇒ R1
0(1− ξ1) < R2

0(1− ξ2).

By continuity, if R2
0(1 − ξ2) > R1

0(1− ξ1), pe
BP
1 < 1 for µ > 0 small enough.

b) If R2
0(1− ξ2) = R1

0(1− ξ1), pe
BP
1 ≡ 1 for all µ > 0.

If R2
0(1−ξ2) < R1

0(1−ξ1), pe
BP
1 is a decreasing continuous function of µ on [0,+∞).

Hence

peBP
1 > p∞ := lim

µ→+∞

peBP
1 =

(R1
0 −R2

0)

R2
0(ξ1 − ξ2)

[1− ξ1 +
ξ1(R

2
0(1− ξ2)−R1

0(1 − ξ1))

R1
0R

2
0(ξ1 − ξ2)

].

Now

p∞−1 =
(R1

0 −R2
0)(1 − ξ1)−R2

0(ξ1 − ξ2)

R2
0(ξ1 − ξ2)

+
(R1

0 −R2
0)ξ1(R

2
0(1− ξ2)−R1

0(1− ξ1))

R2
0(ξ1 − ξ2)R1

0R
2
0(ξ1 − ξ2)

=
R1

0(1− ξ1)−R2
0(1− ξ2)

R2
0(ξ1 − ξ2)

(

1−
(R1

0 −R2
0)ξ1

R1
0R

2
0(ξ1 − ξ2)

)

.
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We use the inequality (R1
0 −R2

0)ξ1 < R1
0ξ1 −R2

0ξ2 in the bracketed term to have

1−
(R1

0 −R2
0)ξ1

R1
0
R2

0
(ξ1 − ξ2)

> 1−
R1

0ξ1 −R2
0ξ2

R1
0
R2

0
(ξ1 − ξ2)

=
C

R1
0
R2

0
(ξ1 − ξ2)

> 0,

proving p∞ − 1 > 0.

A.3 Proof of Lemma 6

Proof. Let J be the Jacobian matrix at the coexistence equilibrium:

J =





















−
π

N̂
0 −γ1N̂ −γ2N̂

−
π

N̂2
(1− x̂− pe) −

π

N̂
− a −x̂[R1

0(µ+ γ1)− γ1] −x̂[R2
0(µ+ γ2)− γ2]

π

N̂2
ŷ1 ŷ1R

1
0(µ+ γ1)ξ1 −ŷ1b+ γ1ŷ1 −ŷ1b+ γ2ŷ1

π

N̂2
ŷ2 ŷ2R

2
0(µ+ γ2)ξ2 −ŷ2c+ γ1ŷ2 −ŷ2c+ γ2ŷ2





















.

where

a = R1
0(µ+ γ1)ŷ1 − γ1ŷ1 +R2

0(µ+ γ2)ŷ2 − γ2ŷ2

b = R1
0(µ+ γ1)(1− ξ1)

c = R2
0(µ+ γ2)(1 − ξ2)

(74)

We apply the Gauss-Jordan algorithm in the following steps:

1) substitute the fourth row of J with the sum of its fourth row multiplied times

ŷ1 and its third row multiplied times −ŷ2, thus obtaining matrix J1

2) substitute the third column of matrix J1 with the sum of the its thrid column

and its fourth column multiplied times −1, thus obtaining matrix J2

3) substitute the third row of matrix J2 with the sum of its third row multiplied

times N̂ and its first row multiplied times ŷ1, thus obtaining matrix

J3 =



















−
π

N̂
0 (γ2 − γ1)N̂ −γ2N̂

−
π

N̂2
(1 − x̂− pe) −

π

N̂
− a x̂d −x̂[R2

0(µ+ γ2)− γ2]

0 N̂R1
0ŷ1(µ+ γ1)ξ1 0 −N̂R1

0ŷ1(µ+ γ1)(1 − ξ1)

0 ŷ1ŷ2e 0 ŷ1ŷ2(b − c)



















.
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where a, b and c are given in (74) and

d = R2
0(µ+ γ2)− γ2 −R1

0(µ+ γ1) + γ1

e = R2
0(µ+ γ2)ξ2 −R1

0(µ+ γ1)ξ1

Due to the properties of the determinant, we have

|J | = |J3|. (75)

We compute |J3| expanding through its first column obtaining

|J3| =
|A|πR1

0R
2
0(µ+ γ1)(µ+ γ2)ŷ

2
1 ŷ2(ξ1 − ξ2)

µ
(76)

where |A| is given in (46). Conditions (36) and identities (75) and (76) imply our

claim.
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