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in demographic equilibrium between below-replacement fertility and immi-

gration; the spread of the infection occurs through a general age-dependent

kernel. We analyse the equations for steady states; because of immigration

of infectives a steady state with a positive density of infectives always ex-
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ists; however, a quasi-threshold theorem is proved, in the sense that, below

the threshold, the density of infectives is close to 0, while it is away from

0, above the threshold; furthermore, conditions that guarantee uniqueness of

steady states are obtained. Finally, we present some numerical examples, in-

spired by the Italian demographic situation, that illustrate the threshold-like

behaviour, and other features of the stationary solutions and of the transient.

Keywords Age structured epidemic model - Immigration - Below

replacement fertility - Quasi-threshold theorem - Fixed points of positive

operators

1 Introduction.

The current demographic trend in many Western countries is characterized

by transition to sustained below replacement fertility and a sizeable immi-

gration[18,28]. Among the many aspects influenced by this major transition,

it has been surmised that the dynamics of childhood infectious diseases (such

as measles) could be substantially affected [23]). Understanding the possible

consequences of such a transition with the help of mathematical models is im-

portant in planning public health policies, for example vaccination strategies

aimed at the control and elimination of an infectious disease in a population

[21].

In this paper we analyse a SIR age-structured model for the spread of an

infectious disease in a population subject to below replacement fertility and

immigration. The model is built, on the one hand, on the stable population

model with immigration under conditions of below replacement fertility[4,7,
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22], on the other hand on the theory of age-structured epidemic models [2,

6,11,15].

We will therefore assume that the population demographic rates are be-

low replacement (in the demographic literature the acronym BRF, below

replacement fertility is often used), but that an immigration inflow helps

in driving the population to stationarity. In order to focus the attention on

the interaction between epidemiology and demography per se, and not on

the interaction among social groups, we assume that immigrants are indis-

tinguishable by residents, as they arrive. The current setting can be easily

extended to more realistic assumptions, such as considering separately resi-

dents and immigrants, but letting the children of the latter (first-generation)

be identical to residents, but the resulting models would certainly be more

complex. Finally, we assume, following the usual approach in models for in-

fectious diseases aiming at analytical results [10,11,15], that the population

is in a demographically stationary state. Hence, we assume that the popula-

tion has reached the equilibrium [4,7,14] between below-replacement-fertility

and immigration. This assumption allows us to obtain the results discussed

in Sections 4 and 5; in Section 6, we present the results of some simulations

that compare the epidemic processes obtained under the assumption of a

demographically stationary state, with those that start from an initial state

close to the current Italian demography and that have a very long transient

period.

Threshold theorems are an important contribution of mathematical epi-

demiology, starting from the pioneering work of Ross and Kermack-McKendrick.
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For the SIR model, without age structure, one can refer to Hethcote [12]. The

case of the age-structured SIR model has been thoroughly analysed by In-

aba [15] in terms of R0, defined as the spectral radius of a certain positive

linear operator: when R0 ≤ 1, there exists only the disease–free equilibrium

(DFE), and it is globally stable; on the other hand, when R0 > 1, the DFE

is unstable, and there exists (at least one) endemic equilibrium.

How do the properties of the model change when immigration is included

in the model? It is rather clear that, if a constant flow of infectives enters the

population, there cannot be a disease-free equilibrium. Brauer and Van den

Driessche (2001,[5]) in their analysis of an SIR model, without age structure,

but with a constant flow of new members into the population a fraction p of

which is infective, started from the observation that, if p > 0 there is a unique

endemic equilibrium u∗(p) for all parameter values. However, they recovered

a threshold-like behaviour in the following sense: as p goes to zero, if R0 < 1,

then u∗(p) tends to the DFE as p goes to zero; otherwise if R0 > 1 then for

p = 0 the model has a unique endemic equilibrium u∗, and u∗(p) tends to

u∗ as p goes to zero. R0 is defined as in the SIR model without immigration

[12].

In this paper we extend the threshold result by Inaba [15] considering im-

migration of infective individuals, in the same spirit as Brauer and Van den

Driessche [5]. We then briefly discuss conditions that guarantee the unique-

ness of the steady state in this model. The equilibrium dynamics of age-

structured SIR models in the framework of populations with BRF and immi-

gration has already been considered in Iannelli and Manfredi [13] but under
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the assumption of proportionate mixing. In this paper we consider instead

fully general age structured mixing patterns that include what is generally

used in realistic simulations of childhood diseases (see, for instance, [3]).

Kretzschmar and others in [20] considered age structure and immigration

in a rather detailed mathematical model of hepatitis B to investigate the

effects of immigration of carriers on the efforts of vaccination in the Nether-

lands. The focus of the paper was on the analysis of the specific case, but

one of the conclusion was that the immigration of carriers makes success of

universal vaccination a not eventually reachable target, in agreement with

the model of Brauer and Van den Driessche.

2 The equations of the model.

We start from the equations for a population with age-strucured fertility and

mortality rates m(a) , µ(a) and subject to a constant (as age structure and

total number of individuals) immigration inflow I(a). The evolution of the

density n(a, t) of individuals aged a at time t can be described by the following

McKendrick-Von Foerster PDE with boundary and initial conditions:



































(

∂
∂t

+ ∂
∂a

)

n(a, t) = −µ(a)n(a, t) + I(a) 0 < a < ω , t > 0

n(0, t) = B(t) =
∫ ω

0 m(a)n(a, t)da t ≥ 0

n(a, 0) = n0(a) 0 < a < ω

(1)

In (1) ω represents the maximum life span of the individuals, and B(t) is

the number of newborns per unit time at time t. Technical conditions to

ensure the well-posedness of the problem are that the mortality rate µ(a)
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lies in L1
loc

(

[0, ω)
)

, with
∫ ω

0 µ(a)da = +∞ , and that the fertility rate m(·) ∈

L∞(0, ω).

We will consider these equations under the conditions of below replace-

ment fertility (BRF). If π(a) = e−
R

a

0
µ(s)ds is the proportion of individuals

who are still living at age a (because of the assumptions on µ(·), we have

π(ω) = 0), R =
∫ ω

0 m(a)π(a)da represents the net reproduction rate, i.e. the

average number of newborn individuals an individual is expected to produce

during his reproductive life. The BRF condition is then R < 1. Equation (1)

is the basis of the so called stable population model with immigration (SPI

model), used in demography to analyze the long term behaviour of popula-

tions with BRF and subject to immigration [4]. Cerone [7] and Inaba [14]

proved that the stationary solution of (1), given by

n(a) = Bπ(a) +

∫ ω

0

I(s)
π(a)

π(s)
ds , 0 ≤ a ≤ ω (2)

with B given by:

B =
1

1 −R

∫ ω

0

m(a)π(a)

∫ a

0

I(s)

π(s)
ds da , (3)

is globally asymptotically stable.

As stated in the introduction, we study the spread of an epidemic un-

der the condition that the population is in the demographical stationary

state (2). We consider a SIR age-structured epidemic model where X(a, t),

Y (a, t), Z(a, t) are the densities of susceptible, infective and removed in-

dividuals of age a at time t; we assume that the contact process between

individivduals is summarised by the transmission coefficient β(a, a′), that is
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β(a, a′)X(a, t)Y (a′, t)da da′ is the number of susceptibles aged in (a, a+ da)

that contract the disease by means of a suitable contact with an infective

aged in (a′, a′ + da′) in the time unit at time t: i.e. we assume for the force

of infection λ(a, t) (FOI for short) the functional form (see [2,27])

λ(a, t) =

∫ ω

0

β(a, s)Y (s, t) ds . (4)

Remark 1 The functional form (4) basically assumes that the force of infec-

tion scales linearly with population density. As observed by Manfredi and

Williams [23], such a choice makes the force of infection too much sensitive

with respect to changes in population size, in case of demographical instabil-

ities. Other choices have been used in the literature, such as

λ(a, t) =

∫ ω

0

β(a, s)
Y (s, t)

n(s, t)
ds or λ(a, t) =

1

N(t)

∫ ω

0

β(a, s)Y (s, t) ds .

(5)

If population density is stationary, different choices correspond to a redifini-

tion of β, and we may in any case study the problem using (4). If, on the other

hand, population density fluctuates, different choices for λ(a, t) may give rise

to different qualitative behaviours; this will be explored in the future through

simulations.

We denote IX(a), IY (a), IZ(a) the densities of susceptible, infective and

removed immigrants that enter the population in the time unit. For consis-

tency with equation (1), we require IX(a) + IY (a) + IZ(a) = I(a) .

Finally, we let γ be the removal rate, so that 1/γ is the average infectious

period. Then the spread of the disease can be described by the following non
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homogeneous system of PDE’s a-la Lotka-McKendrick:



































(

∂
∂t

+ ∂
∂a

)

X = −(λ(a, t) + µ(a))X + IX(a)

(

∂
∂t

+ ∂
∂a

)

Y = λ(a, t)X − (µ(a) + γ)Y + IY (a)

(

∂
∂t

+ ∂
∂a

)

Z = γY − µ(a)Z + IZ(a)

0 < a < ω , t > 0

(6a)

To complete system (6), boundary and initial conditions are to be given

X(0, t) = B , Y (0, t) = 0 , Z(0, t) = 0 t ≥ 0

(6b)

with B given by (3). Finally, the initial conditions are

X(a, 0) = X0(a) , Y (a, 0) = Y0(a) , Z(a, 0) = Z0(a) 0 < a < ω .

(6c)

Condition (6b) amounts to assuming that all newborn individuals are sus-

ceptibles, that is we assume there is no vertical transmission of the disease

(nor, maternally transmitted immunity).

Moreover, the initial densities (6a) satisfy X0(a) + Y0(a) +Z0(a) = n(a),

the stationary density. Hence, we have

X(a, t) + Y (a, t) + Z(a, t) = n(a) ∀ t ≥ 0 .

The problem to be considered is then given by (6), completed by the relation

(4). Well-posedness can be obtained, as in [15] by setting it as an initial

value problem in the Banach space L1(0, ω). Using standard methods, one

can obtain
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Theorem 1 Let Ix, Iy , Iz ∈ L1
+(0, ω) , β ∈ L∞

(

(0, ω)×(0, ω)
)

≥ 0. Assume

that the initial data X0, Y0 satisfy

X0(·), Y0(·) ∈AC
(

[0, ω]
)

with X0(0) = B, Y0(0) = 0 ,

X0(a) ≥ 0 , Y0(a) ≥ 0 a.e. a ∈ (0, ω).

(7)

Then there exists one and only one classical solution of system (6)–(4), which

is defined for all t ≥ 0.

3 Steady states.

We now consider existence, uniqueness and threshold behaviour of steady

states of system (6). We start by making suitable assumptions on the con-

tact coefficient β(·, ·) and the age profile of the immigrants to be used.

We assume again Ix, Iy , Iz ∈ L1(0, ω), β ∈ L∞
(

(0, ω) × (0, ω)
)

to be non-

negative functions. Further we assume

Assumption 1 β(·, ·) satisfies

lim
h→0

∫ ω

0

|β(a+ h, s) − β(a, s)|da = 0

uniformly for s ∈ R , with β(·, ·) extended by setting β(a, s) = 0 for a, s ∈

(−∞, 0) ∪ (ω,+∞) ;

Assumption 2 There exists m > 0 , 0 < α < ω such that β(a, s) ≥ m for

a.e. (a, s) ∈ (0, ω) × (ω − α, ω).

Assumption 3 There exist 0 ≤ a1 < a2 ≤ ω such that Iy(a) > 0 a.e. a ∈

(a1, a2).



10

The equations for the steady states of (6) are as follows:


































d
da
X∗ (a) = −

(

λ∗(a) + µ(a)
)

X∗(a) + Ix(a)

d
daY

∗ (a) = λ∗(a)X∗(a) −
(

γ + µ(a)
)

Y ∗(a) + Iy(a)

0 < a < ω

X∗(0) = B, Y ∗(0) = 0

(8)

with

λ∗(a) =

∫ ω

0

β(a, s)Y ∗(s) ds.

By solving (8) directly we obtain:

X∗(a) = Bπ(a)e−
R

a

0
λ∗(s) ds +

∫ a

0

Ix(σ)
π(a)

π(σ)
e−

R

a

σ
λ∗(s) dsdσ (9a)

Y ∗(a) =

∫ a

0

e−γ(a−σ) π(a)

π(σ)
(λ∗(σ)X∗(σ) + Iy(σ)) dσ (9b)

Then we obtain for the force of infection λ∗(·):

λ∗(a) =

∫ ω

0

β(a, ξ)Y ∗(ξ) dξ =

∫ ω

0

(

Bλ∗(σ)e−
R

σ

0
λ∗(s) dsπ(σ)

+ λ∗(σ)

∫ σ

0

Ix(s)e
−

R

σ

s
λ∗(τ)dτ π(σ)

π(s)
ds+ Iy(σ)

)

φ(a, σ)dσ

(10)

where φ(·, ·) is given by:

φ(a, σ) =

∫ ω

σ

β(a, ξ)e−γ(ξ−σ) π(ξ)

π(σ)
dξ. (11)

We consider

L1
+(0, ω) =

{

f ∈ L1(0, ω) s.t. f ≥ 0 a.e. on (0, ω)
}

, (12)

the cone of the nonnegative functions in the Banach space L1(0, ω), and

define the positive nonlinear operator Φ : L1
+(0, ω) −→ L1

+(0, ω) by setting

(Φψ)(a) =

∫ ω

0

(

Bψ(σ)π(σ)e−
R

σ

0
ψ(s) ds

+ ψ(σ)

∫ σ

0

Ix(s)e
−

R

σ

s
ψ(τ) dτ π(σ)

π(s)
ds + Iy(σ)

)

φ(a, σ)dσ,

(13)
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a ∈ (0, ω).

Each fixed point of Φ in the positive cone is a force of infection λ∗(·) that

satisfies (10); hence, through (9), it yields an equilibrium solution of (6); and

viceversa.

Just by looking at (9b) we see that, because of assumption 3, in any

equilibrium solution of (6) the density infectives Y ∗(·) satisfies Y ∗ > 0. This

means that in presence of infectives in the immigrant population, there is no

disease–free equilibium (DFE), as was noted by Brauer-Van den Driessche

[5] for a SIR model without age structure.

Furthermore, if we define

u0(a) =
(

Φ (0)
)

(a) =

∫ ω

0

Iy(σ)φ(a, σ)dσ , a ∈ (0, ω); (14)

we see that any fixed point λ∗ of (13) satisfies λ∗(a) ≥ u0(a) a.e. Under

Assumption 2, we have

φ(a, σ) ≥ m

ω
∫

max{σ,ω−α}

e−γ(ξ−σ) π(ξ)

π(σ)
dξ ≥ me−γω

ω
∫

max{σ,ω−α}

π(ξ) dξ = φm(σ). (15)

It is easy to see that φm(σ) > 0 for all σ < ω; moreover, φm(·) is continuous

and non-increasing. Then, because of Assumption 3,

u0(a) ≥

∫ ω

0

Iy(σ)φm(σ)dσ = u > 0.

This means that at an equilibrium solution of (6), the force of infection λ∗ is

strictly positive at all ages.

We study fixed points of (13) using the theory of positive operators defined

on a cone in a Banach space.

We first note that there exists R > 0 such that ‖Φψ‖1 ≤ R ∀ψ ∈

L1
+(0, ω) .
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In fact, using the definition, we have

φ(a, σ) ≤ ‖φ‖∞ ≤ ‖β‖∞ω.

Then,

Φ(ψ)(a) ≤ ‖φ‖∞

(

B

∫ ω

0

ψ(σ)e−
R

σ

0
ψ(s) ds dσ

+

∫ ω

0

Ix(s)

∫ ω

s

ψ(σ)e−
R

σ

s
ψ(τ) dτdσ ds+ ‖Iy‖1

)

= ‖φ‖∞

(

B
(

1 − e−
R

ω

0
ψ
)

+

∫ ω

0

Ix(s)
(

1 − e−
R

ω

s
ψds

)

+ ‖Iy‖1

)

≤ ‖φ‖∞ (B + ‖Ix‖1 + ‖Iy‖1) ,

(16)

and R can be obtained easily.

Define now

D =
{

ψ ∈ L1
+(0, ω) : ‖ψ‖1 ≤ R

}

∩
{

ψ ∈ L1
+(0, ω) : ψ ≥ u0

}

. (17)

We have the following

Theorem 2 Let assumptions 1-3 hold. Then

i) D is closed, bounded, convex and such that Φ(D) ⊆ D ;

ii) Φ is completely continuous.

Hence, there exists ψ ∈ D such that ψ = Φ(ψ).

Proof i) follows immediately from the definition, and the previous consider-

ations.

ii) There exists C > 0 s.t. ‖Φ(ψ1) − Φ(ψ2)‖1 ≤ C‖ψ1 − ψ2‖1 ∀ψ1, ψ2 ∈

L1
+(0, ω) ; in fact
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(Φ(ψ1))(a) − (Φ(ψ2))(a)

=

ω
∫

0

B
(

ψ1(σ)e
−

σ
R

0

ψ1(τ)dτ
− ψ2(σ)e

−
σ
R

0

ψ2(τ)dτ)
π(σ)φ(a, σ) dσ

+

ω
∫

0

Ix(s)

ω
∫

s

π(σ)

π(s)

(

ψ1(σ)e
−

σ
R

s

ψ1

− ψ2(σ)e
−

σ
R

s

ψ2)

φ(a, σ) dσ ds .

(18)

For the first term in (18) we have
∣

∣

∣

∣

B

∫ ω

0

π(σ)
(

ψ1(σ)e−
R

σ

0
ψ1 − ψ2(σ)e−

R

σ

0
ψ2

)

φ(a, σ) dσ

∣

∣

∣

∣

≤ ‖φ‖∞B

∣

∣

∣

∣

∫ ω

0

d

dσ

(

e−
R

σ

0
ψ2 − e−

R

σ

0
ψ1

)

dσ

∣

∣

∣

∣

= ‖φ‖∞

∣

∣

∣e−‖ψ2‖1 − e−‖ψ1‖1

∣

∣

∣ ≤ ‖φ‖∞ ‖ψ2 − ψ1‖1 a.e. a ∈ (0, ω)

and a similar inequality holds for the second term in (18). Then in particular

Φ is continuous.

To prove compactness of Φ, let us introduce the linear operators T1 :

L1
+(0, ω) −→ L1

+(0, ω) and T2 : L1
+([0, ω]2) −→ L1

+(0, ω) defined as

(T1ψ)(a) =

∫ ω

0

ψ(σ)k1(a, σ)dσ (T2ϕ)(a) =

∫ ω

0

∫ ω

0

ϕ(s, σ)k2(a, s, σ)dσ ds

k1(a, σ) =Bπ(σ)φ(a, σ) k2(a, s, σ) =φ(a, σ)Ix(s)
π(σ)

π(s)
χ{s≤σ}(s, σ).

T1 and T2 are linear, continuous and positive; furthermore, thanks to As-

sumption 1, we can apply Riesz–Frechet–Kolmogorov theorem on compact-

ness in L1 to conclude that T1 and T2 are compact operators.

Furthermore let us define the nonlinear operators F1 : L1
+(0, ω) −→

L1
+(0, ω), F2 : L1

+(0, ω) −→ L1
+([0, ω]2) as

(F1ψ)(σ) = ψ(σ)e−
R

σ

0
ψ(τ)dτ (F2ψ)(s, σ) = ψ(σ)e−

R

σ

s
ψ(τ)dτ .

F1 and F2 are continuous, hence Ti ◦ Fi are compact operators in L1
+(0, ω).
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Hence, we obtain that Φ = T1 ◦ F1 + T2 ◦ F2 + u0 is compact.

From (i) we know that Φ(D) ⊆ D, with D closed, bounded and convex.

From Schauder’s principle it follows that Φ has at least a fixed point in D. ⊓⊔

Remark 2 An important role in what follows pertains to the spectral radius,

ρ(T ), of the linear operator T = Φ′(0), given by

(Tψ)(a) =

∫ ω

0

ψ(σ)
(

Bπ(σ) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

)

φ(a, σ)dσ (19)

for a ∈ (0, ω), ψ ∈ L1(0, ω).

T is a linear, continuous, positive and compact operator (one can use

the same arguments as for Ti) and is closely related to the next-generation

operator T̃ as defined in [9,8]. Indeed, we have (check Section 7.3 of [8])

(T̃ ϕ)(a) = S(a)

∫ ω

0

ϕ(σ)

∫ ω

σ

β(a, s)
π(s)

π(σ)
e−γ(s−σ) ds dσ (20)

where

S(a) = Bπ(a) +

∫ a

0

Ix(s)
π(a)

π(s)
ds (21)

represents the susceptibles in a population at the demographic equilibrium

(2), in which no infections have occurred.

Introducing the linear operator K in L1(0, ω),

(Kϕ)(a) =

∫ ω

0

ϕ(σ)

∫ ω

σ

β(a, s)
π(s)

π(σ)
e−γ(s−σ) ds dσ

we can write T̃ = S ◦K and T = K ◦S, where S represents the multiplication

operator by the function S(a). It is then clear that T and T̃ have the same

eigenvalues, hence the same spectral radius.

We can then interpret ρ(T ) as the reproduction ratio of the infection in

a population at the demographic equilibrium, in which no infections have

occurred.
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4 Threshold-like results.

In the SIR model without immigration Inaba [15] proved that the spectral

radius of T is a threshold for the infection, where T is defined analogously to

above with S(a) being the stationary population in the demographic model

without immigration. He proved

Theorem A (Inaba)

1) If ρ(T ) ≤ 1, the only fixed point of the operator Φ is the null vector ψ ≡ 0;

2) if ρ(T ) > 1 there is at least a non-zero fixed point of Φ.

If the rate of infected immigrants Iy is not zero, then we know (Theor. 2)

that a positive equilibrium is present both if ρ(T ) > 1 and if ρ(T ) ≤ 1, and

that there exists no DFE.

In the SIR model without immigration it is still possible to distinguish

between two different situations for the steady states in terms of the limiting

behaviour of the fixed points of Φ as ‖u0‖1 goes to zero.

We proceed as follows: for fixed Ix(·), Iz(·), we consider a sequence Iy,n ∈

L1
+(0, ω) such that Iy,n(a) −→

n
0 a.e. a ∈ (0, ω) .

Φn and un are the analogous of (13), (14) in which Iy,n has been inserted

in place of Iy with the corresponding change in the stationary population Bn

because of (3). Moreover, we let Φ0 to be defined as (13) with Iy = 0.

We also define Φ̃n = Φn − un, noting that Φ̃n depends on n only because

of the term Bn. Finally, consider the positive linear operators on L1(0, ω)
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Tn = Φ′
n(0), T0 = Φ′

0(0) :

(Tnψ)(a) =

∫ ω

0

ψ(σ)
(

Bnπ(σ) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

)

φ(a, σ)dσ

(T0ψ)(a) =

∫ ω

0

ψ(σ)
(

B0π(σ) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

)

φ(a, σ)dσ

(22)

Consider a sequence {ψn} ⊂ L1
+(0, ω), where ψn is a fixed point for Φn.

Our main result is the following

Theorem 3

1) If ρ(T0) ≤ 1 then lim
n→∞

ψn = 0;

2) if ρ(T0) > 1 then there exists δ > 0 such that ‖ψn‖1 ≥ δ ∀n ∈ N .

Remark 3 Analogously to Remark 2, ρ(T0) represents the reproduction ra-

tio of the infection in a population maintained at demographic equilibrium

through the immigration of only susceptible and immune individuals.

Before proving the Theorem, we need some preliminaries. First, we use

the following

Proposition 1 There exists a converging subsequence of {ψn}. Let ψ =

limk→∞ ψnk
for any converging subsequence {ψnk

}; then ψ = Φ0(ψ). In other

words, the set of limit points of {ψn} are fixed points for Φ0.

Proof Since 0 ≤ ‖ψn‖ ≤ R, where R = maxnRn found from (16), and Φ0 is

compact, there exists a converging subsequence {Φ0(ψnk
)}.

Let ψ = limk→∞ Φ0(ψnk
). We have

ψnk
= Φnk

(ψnk
) = Φ0(ψnk

) + (Φnk
(ψnk

) − Φ0(ψnk
)) . (23)
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Furthermore

(Φnk
(ψnk

))(a) − (Φ0(ψnk
))(a)

= (Bnk
−B0)

∫ ω

0

ψnk
(σ)π(σ)e−

R

σ

0
ψnk

(τ)dτφ(a, σ) dσ

+

∫ ω

0

Iy,nk
(σ)φ(a, σ) dσ.

Since, by assumption, lim
n→∞

Iy,n = 0 a.e., and clearly from (3) lim
n→∞

Bn = B0,

lim
k→∞

[Φnk
(ψnk

) − Φ0(ψnk
)] = 0 a.e., hence in L1.

Substituting this in (23), we have

lim
k→∞

ψnk
= lim

k→∞
Φ0(ψnk

) = ψ

so that {ψnk
} converges to ψ. Furthermore, since Φ0 is continuous,

lim
k→∞

Φ0(ψnk
) = Φ0(ψ) and ψ is a fixed point for Φ0.

The same arguments can be applied to any converging subsequence {ψnk
}.

⊓⊔

We also need some results about the spectral theory of positive operators,

that we briefly recall.

Definition 1 Let E be a Banach space, K ⊂ E a cone. The cone K is called

total if it satisfies

K −K = {ψ − ϕ : ψ, ϕ ∈ K} = E.

Theorem B (Krein-Rutman (1948)) Let E be a real Banach space with

the total order cone K. Let A : E −→ E be linear, compact and positive with

respect to K, and with ρ(A) > 0. Then ρ(A) is an eigenvalue of A and A∗

with eigenvectors in K, K∗, respectively.
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Krein and Rutman [19] present several conditions that ensure the posi-

tivity of ρ(A), and guarantee that it has multiplicity 1. Since L1
+(0, ω) has

empty interior, we cannot use their results, but instead use the following

theorem on kernel operators.

Af(t) =

∫

K(s, t)f(s)dµ(s). (24)

Theorem C ([26], Theor.V6.6) Let E = Lp(µ), where 1 ≤ p ≤ +∞ and

(X,Σ, µ) is a σ−finite measure space. Suppose A ∈ L(E) has the form (24)

where K ≥ 0 is a Σ ×Σ-measurable kernel, satisfying the two assumptions:

i) some power of A is compact;

ii) S ∈ Σ and µ(S) > 0 , µ(X \ S) > 0 implies

∫

X\S

∫

S

K(s, t)dµ(s)dµ(t) > 0 . (25)

Then ρ(A) > 0 is an eigenvalue of A with a unique normalized eigenfunc-

tion f satisfying f(s) > 0 µ-a.e.; moreover if K(s, t) > 0 (µ ⊗ µ)-a.e. then

every other eigenvalue λ of A has modulus |λ| < ρ(A) .

We can apply this theorem to T0 obtaining

Lemma 1 ρ(T0) is an eigenvalue of T0 and T ∗
0 with a unique normalized

strictly positive eigenvectors ψ and f .

Proof T0 is a kernel operator and, as shown in the proof of Theorem 2, is

compact. Moreover, from (15), it is easy to see that condition (25) is satisfied.

Then Theorem C applies, so that ρ(T0) > 0 and ρ(T0) is the only eigenvalue

of T0 of maximal modulus with a unique normalized eigenvector ψ ∈ L1
+(0, ω)

and satisfying ψ(a) > 0 a.e.
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T ∗
0 has the same non zero eigenvalues as T0 with the same multiplicity.

Thus ρ(T0) is an algebraically simple eigenvalue of T ∗
0 and by Theorem B

(L1
+(0, ω) is a total cone) it corresponds to a (unique normalized) eigenfunc-

tional f . It remains to be proved that f is strictly positive. Let us define

f̃ ∈ L∞
+ (0, ω) \ {0} as the function representing the functional f , i.e.

〈f, ψ〉 =

∫ ω

0

f̃(σ)ψ(σ)dσ ∀ψ ∈ L1(0, ω)

T ∗
0 acts from L∞(0, ω) in itself as follows:

(T ∗
0ϕ)(a) =

∫ ω

0

ϕ(σ)
(

B0π(a) +

∫ a

0

Ix(s)
π(a)

π(s)
ds

)

φ(σ, a)dσ. (26)

Using Assumption 2 as in (15), it can be proved that there exists a continuous

function g : [0, ω] −→ R s.t. g(ω) = 0, g(a) > 0 ∀a ∈ [0, ω) such that

(

B0 π(a) +

∫ a

0

Ix(s)
π(a)

π(s)
ds

)

φ(σ, a) ≥ g(a) a.e. (a, σ) ∈ (0, ω) .

Then

f̃(a) =
1

ρ(T0)

(

T ∗
0 f̃

)

(a) ≥
1

ρ(T0)
g(a)

∫ ω

0

f̃(σ)dσ > 0 a.e. a ∈ (0, ω) (27)

because f̃ ∈ L∞
+ (0, ω) \ {0}. Then f is strictly positive. ⊓⊔

Remark 4 This fact can be stated in a more general context by observing

that, as a consequence of Assumption 2, T0 is an irreducible operator on the

Banach lattice L1(0, ω) ([26], V.6). This roughly corresponds to the definition

of non-supporting operator used by Inaba [15].

Lemma 2 The following inequality holds:

e−‖ψ‖1T0ψ ≤ Φ̃ψ ≤ T0ψ ∀ψ ∈ L1
+(0, ω) .
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Proof Let ψ ∈ L1
+(0, ω), then:

(Φ̃ψ)(a) =

∫ ω

0

ψ(σ)π(σ)
(

B0 e
−

R

σ

0
ψ(s)ds +

∫ σ

0

Ix(s)

π(s)
e−

R

σ

s
ψ(τ)dτ ds

)

φ(a, σ)dσ

≤

∫ ω

0

ψ(σ)π(σ)
(

B0 +

∫ σ

0

Ix(s)

π(s)
ds

)

φ(a, σ)dσ = (T0ψ)(a) ;

(Φ̃ψ)(a) ≥ e−
R

ω

0
ψ(s)ds

∫ ω

0

ψ(σ)π(σ)
(

B0 +

∫ σ

0

Ix(s)

π(s)
ds

)

φ(a, σ)dσ

= e−‖ψ‖1(T0ψ)(a).

⊓⊔

Remark 5 By induction a more general inequality can be proved:

e−
Pn−1

k=0
‖Tk

0
ψ‖1 T n0 ψ ≤ Φ̃n ψ ≤ T n0 ψ ∀ ψ ∈ L1

+(0, ω), ∀ n ∈ N .

All of what has been proved for T0, holds obviously also for Tn, ∀n ∈ N.

Moreover,

Lemma 3 lim
n→∞

ρ(Tn) = ρ(T0), and ρ(Tn) ≥ ρ(T0) for all n.

Proof As seen above Bn −→
n

B0, hence Tn tends to T0 uniformly. Since they

are compact positive operators, ρ(Tn) [and ρ(T0)] are isolated eigenvalues of

Tn [and T0]. Then standard results in perturbation theory (see [17], Section

IV.3.5) show that ρ(Tn) −→
n

ρ(T0).

As for the second claim, from (3), one sees B0 < Bn, hence T0 ≤ Tn.

From a comparison result about positive operators (see [25]) then follows

that ρ(Tn) ≥ ρ(T0). ⊓⊔

We can now prove the main threshold result:

Proof (of Theorem 3)
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i) Using Proposition 1, we see that any converging subsequence {ψnk
} ⊂

{ψn} tends to ψ fixed point of Φ0. Since, for ρ(T0) ≤ 1, Φ0 has only 0 as

fixed point (Theorem A), ψ = 0, i.e. the whole sequence converges to 0.

ii) From ρ(T0) > 1 it follows that ρ(Tn) > 1 ∀ n by virtue of Lemma 3.

Let fn ∈ (L1
+(0, ω))∗ \ {0} be the strictly positive eigenvector of T ∗

n with

respect to the eigenvalue ρ(Tn). Then we have, ∀ n ∈ N,

〈fn, ψn〉 = 〈fn, Φn ψn〉 = 〈fn, Φ̃n ψn + un〉

≥ 〈fn, e
−‖ψn‖1 Tnψn + un〉 > 〈fn, e

−‖ψn‖1 Tnψn〉

= e−‖ψn‖1〈T ∗
nfn, ψn〉 = e−‖ψn‖1ρ(Tn)〈fn, ψn〉,

(28)

where the first inequality follows from Lemma 2. Since ψn ≥ un > 0 and

fn is a strictly positive functional, we have that:

1 > e−‖ψn‖1 ρ(Tn) ∀ n ∈ N

that is

‖ψn‖1 > log(ρ(Tn)) ≥ log(ρ(T0)). (29)

The thesis then holds with δ = log(ρ(T0)).

⊓⊔

Remark 6 The derivation of inequality (29) shows that it can be seen as the

combination of two more basic inequalities:

‖ψn‖1 ≥ ‖ψ0‖1 and ‖ψ0‖1 > log(ρ(T0))

where ψ0 is a steady state of (6)–(4) without immigration of infective indi-

viduals.

The inequality ‖ψ0‖1 > log(ρ(T0)) can be proved analogously to (28) and

gives a lower bound for the steady states of the model without immigration.
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5 The issue of uniqueness.

Several sufficient conditions guarantee the uniqueness of positive equilibria

for the SIR model without immigration, but there exist no general results.

Indeed, there exist examples [Franceschetti, in preparation] with multiple

positive equilibria of the model without immigration. Hence, we expect that

no general results may exist for this model too, and we consider only the

extension to this case of the sufficient conditions found for the model without

immigration.

Iannelli and Manfredi [13] deal with the case of a separable kernel, i.e.

β(a, s) = β1(a)β2(s), where the search for equilibria reduces to a one–dimen-

sional fixed point problem. We consider here instead the other cases, whose

proof [15] is based on the concept of monotonicity for sublinear operators [1],

which we briefly review.

Given a Banach space E partially ordered by means of a cone C, let

u,w ∈ E be such that u ≤ w, the order interval of extremes u, w is the set

[u,w] = {v ∈ E : u ≤ v ≤ w} = (u + C) ∩ (w − C). A nonlinear mapping

A : D(A) ⊆ E −→ E is called increasing if, for all u, v ∈ D(A) such that

u < v we have Au ≤ Av; is called strictly increasing if the strict inequality

sign Au < Av holds; and is called e-increasing if there exists e ∈ C \{0} such

that for every u, v ∈ D(A) with u < v there exists constants α = α(u, v) > 0,

β = β(u, v) > 0 such that α e ≤ Av −Au ≤ β e.

A nonlinear mapping A : [v, w] −→ E is called sublinear with respect to
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[v, w] if the following holds:

A
(

v + τ(u − v)
)

−
(

v + τ(Au − v)
)

≥ 0 ∀ u ∈ [v, w], ∀ τ ∈ [0, 1];

A is called strictly sublinear if it holds the strict inequality sign for every

u ∈ (v, w] = [v, w] \ {v} and τ ∈ (0, 1); A is called e-sublinear if there exists

e ∈ C \ {0} such that for every u ∈ (v, w] and every τ ∈ (0, 1) there exists

δ = δ(u, τ) > 0 such that

A
(

v + τ(u− v)
)

−
(

v + τ(Au − v)
)

≥ δ e .

The following uniqueness result is due to Amann [1].

Theorem D Let E be an ordered Banach space. Let us set [v,∞) = {u ∈

E : u ≥ v} and suppose A : [v,∞) −→ E is e-sublinear and e-increasing and

suppose there exists γ > 0 such that 0 ≤ Av − v ≤ γ e. Then A has at most

one fixed point in (v,∞) = [v,∞) \ {v}.

We can consider the operator Φ as operating from the order interval

[u0,∞) into itself, Φ : [u0,∞) −→ [u0,∞) , in view of the fact that Φψ ≥ u0

∀ψ ∈ L1
+(0, ω) . We have

Proposition 2 Φ is e-sublinear on [u0,∞) with e(a) ≡ 1.
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Proof Given ψ ∈ L1
+(0, ω) with ψ > u0, τ ∈ (0, 1) we have:

Φ
(

u0 + τ(ψ − u0)
)

(a) −
(

u0 + τ(Φψ − u0)
)

(a)

=(1 − τ)

∫ ω

0

u0(σ)

(

Bπ(σ)e−
R

σ

0
((1−τ)u0(η)+τψ(η))dη

+

∫ σ

0

Ix(s)e
−

R

σ

s
((1−τ)u0(η)+τψ(η)) ds

)

φ(a, σ)dσ

+ τ

∫ ω

0

ψ(σ)

(

Bπ(σ)e−
R

σ

0
ψ(η)dη

(

e(1−τ)
R

σ

0
(ψ(η)−u0(η))dη − 1

)

+

∫ σ

0

Ix(s)e
−

R

σ

s
ψ

(

e(1−τ)
R

σ

s
(ψ(η)−u0(η))dη − 1

)

ds

)

φ(a, σ) dσ

(30)

Since φ(a, s) ≥ φm(s) > 0 a.e. (see (15)), we obtain

Φ
(

u0 + τ(ψ − u0)
)

(a) −
(

u0 + τ(Φψ − u0)
)

(a) ≥ δ (31)

where δ = δ(ψ, τ) > 0 is the constant obtained substituting φm(s) to φ(a, s)

in (30). ⊓⊔

Following Inaba [15], an assumption on the kernel φ(·, ·) that guarantees

the monotonicity of the operator Φ is the following

Assumption 4

−
dφ

ds
(a, s) = β(a, s)n(s) − γφ(a, s) ≥ 0 a.e. (a, s) ∈ (0, ω) × (0, ω) (32)

We then have

Proposition 3 Under assumption 4, the operator Φ is e-increasing with re-

spect to the order interval [u0,∞) .

The proof is identical to that of Inaba.

Hence, we obtain
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Theorem 4 Under the assumptions 1-4 there always exists a unique equi-

librium of (6).

Proof The existence part comes from Theorem 2.

As for uniqueness, we use Theorem D. Sublinearity and monotonicity

have already been discussed. It remains to check the condition

∃ γ > 0 : 0 ≤ Φu0 − u0 ≤ γ e.

We have Φu0 − u0 = Φ̃u0 > 0. Moreover, we have
(

Φu0

)

(a) − u0(a) ≤ γ e(a)

a.e. with e(a) ≡ 1 as in Proposition 2 and γ = ‖Φu0‖∞ + ‖u0‖∞. ⊓⊔

Note that, for the case without immigration, Inaba showed, under as-

sumption 4, that there exists a unique positive equilibrium, if ρ(T ) > 1,

and no positive equilibrium if ρ(T ) ≤ 1; moreover, for all parameter values

there exists the disease–free equilibrium. The present results shows clearly

the effect of immigration.

Another result of Inaba concerning uniqueness is that, when ρ(T ) ≤ 1,

there are no positive equilibria of the system without immigration. A re-

lated result holds also for the system with immigration, but requires some

qualifications and preliminaries. First, we state the following

Lemma 4 If ρ(T ) < 1, ψ ∈ L1
+(0, ω) is a fixed point of Φ then we have:

(0 ≤)ψ ≤ (I − T )−1u0 .

Proof We have 0 ≤ Tψ + u0 − Φψ = Tψ + u0 − ψ.

Since ρ(T ) < 1, there exists (I − T )−1 and, because T ∈ L+(L1(0, ω)),

(I − T )−1 ∈ L+(L1(0, ω)). Then we have:

0 ≤ (I−T )−1
(

Tψ+u0−ψ
)

= (I−T )−1
(

u0− (I−T )ψ
)

= (I−T )−1u0−ψ ,
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which is the thesis. ⊓⊔

The following lemma establishes that, if ‖v0‖ is small enough, Φ is mono-

tone on the order interval [0, v0].

Proposition 4 Let

‖v0‖e
‖v0‖ < e−γω. (33)

Then the operator Φ is e-increasing on the order interval [0, v0].

Proof Given ψ1, ψ2 ∈ L1
+(0, ω) such that ψ1 < ψ2 ≤ v0 we have:

(Φψ2)(a) − (Φψ1)(a)

= B

∫ ω

0

π(σ)
(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

0
ψ2(τ)dτ φ(a, σ) dσ−

−B

∫ ω

0

ψ1(σ)π(σ)

(

e−
R

σ

0
ψ1(τ)dτ − e−

R

σ

0
ψ2(τ)dτ

)

φ(a, σ) dσ

+

∫ ω

0

Ix(s)

π(s)

∫ ω

s

(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

s
ψ2(τ)dτ φ(a, σ) dσ ds

−

∫ ω

0

Ix(s)

π(s)

∫ ω

s

ψ1(σ)

(

e−
R

σ

s
ψ1(τ)dτ − e−

R

σ

s
ψ2(τ)dτ

)

φ(a, σ) dσ ds

≥ B

∫ ω

0

π(σ)
(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

0
ψ2(τ)dτ φ(a, σ) dσ

−B

∫ ω

0

ψ1(σ)π(σ)

∫ σ

0

(

ψ2(τ) − ψ1(τ)
)

dτ φ(a, σ) dσ

+

∫ ω

0

Ix(s)

π(s)

∫ ω

s

π(σ)
(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

s
ψ2(τ)dτ φ(a, σ) dσ ds

−

∫ ω

0

Ix(s)

π(s)

∫ ω

s

ψ1(σ)π(σ)

∫ σ

s

(

ψ2(τ) − ψ1(τ)
)

dτ φ(a, σ) dσ ds

=

∫ ω

0

(

B +

∫ σ

0

Ix(s)

π(s)
ds

)

(

ψ2(σ) − ψ1(σ)
)

×
(

π(σ)e−
R

σ

0
ψ2(τ

′)dτ ′

φ(a, σ) −

∫ ω

σ

ψ1(τ)π(τ)φ(a, τ)dτ
)

dσ

(34)

Moreover, we have, for τ ∈ [σ, ω],

π(τ)φ(a, τ) =

∫ ω

τ

β(a, ξ)e−γ(ξ−τ)π(ξ) dξ ≤

∫ ω

σ

β(a, ξ)π(ξ) dξ.
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Then we obtain

∫ ω

σ

ψ1(τ)π(τ)φ(a, τ) dτ ≤ ‖ψ1‖1 max
τ∈[σ,ω]

π(τ)φ(a, τ)

≤ ‖ψ1‖1

∫ ω

σ

β(a, ξ)π(ξ) dξ

(35)

and

π(σ)e−
R

σ

0
ψ2(τ

′)dτ ′

φ(a, σ) ≥ e−‖ψ2‖1

∫ ω

σ

β(a, ξ)e−γ(ξ−σ)π(ξ) dξ

≥ e−‖ψ2‖1e−γω
∫ ω

σ

β(a, ξ)π(ξ) dξ.

(36)

Substituting (35) and (36) in (34), we obtain

(Φψ2)(a) − (Φψ1)(a)

≥ B
(

e−‖v0‖1e−γω − ‖v0‖1

)

∫ ω

0

(ψ2(σ) − ψ1(σ))

∫ ω

σ

β(a, ξ)π(ξ) dξ dσ.

(37)

We have ψ2 > ψ1, (33) holds, and, because of assumption 2,

∫ ω

σ

β(a, ξ)π(ξ) dξ ≥ φm(σ) > 0 for all σ ∈ (0, ω);

hence, the definition of e-increasing operator is satisfied with e(a) ≡ 1

α(ψ1, ψ2) = B
(

e−‖v0‖1e−γω − ‖v0‖1

)

∫ ω

0

(ψ2(σ) − ψ1(σ))φm(σ) dσ

β(ψ1, ψ2) = 2 max
{

‖Φψ1‖∞, ‖Φψ2‖∞
}

.

⊓⊔

Combining Lemma 4 and Proposition 4, we obtain

Theorem 5 Let ρ(T ) < 1 and assumptions 1-2 hold. Then, for ‖Iy‖1 small

enough, there exists a unique equilibrium of (6). Moreover, the corresponding

force of infection λ∗ satisfies λ∗ ≤ (I − T )−1u0.
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Proof Lemma 4 shows that all solutions lie in [0, (I − T )−1u0], while Propo-

sition 4 shows that, if

‖(I − T )−1u0‖e
‖(I−T )−1u0‖ < e−γω, (38)

Φ is e-increasing on [0, (I − T )−1u0].

Finally, when ‖Iy‖1 is small enough, (38) is satisfied (remember the defi-

nition (14) of u0), and Theorem D can be applied. ⊓⊔

Probably a sharper condition for Φ to be an increasing operator on [0, (I−

T )−1u0] can be found, but (38) suffices for our aims.

6 A numerical example

We illustrate our model by an example somehow inspired by the Italian

demographic setting, and with epidemic parameters similar to what generally

used for measles.

Precisely, fertility and mortality rates are taken from females’ demo-

graphic data of Italy in 2004 [16]. In Fig. 1 we show the functions m(·)

and π(·) used. The corresponding value of R is approximately 0.6, so that it

is definitely a below-replacement population.

The age-dependent immigration rate has been parametrized as

Ix(a) = Iix(a) Iy(a) = Iiy(a) Iz(a) = Iiz(a) (39)

where i(a) = ix(a) + iy(a) + iz(a) is such that

∫ ω

0

i(a) da = 1. Hence, I

represents the total immigration rate, and will be used as a free parameter,

while the function i(a) represents the age profile of immigration. As the age
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Fig. 1 The fertility m(·) and survival π(·) functions used in the simulations.

profile of immigration we have used the profile reported in in Fig. 2, that

was fitted by Manfredi and Valentini [22] to Italian immigration data prior

to 2000. The profile shows the typical features of work migrations with a

marked peak at young workers ages, plus a smaller peak at zero age.

From the demographic parameters and the immigration rate, one can

compute through (2) the stationary population. Assuming I = 100, 000 (time

is measured in years), we obtain the population shown in Fig. 2; total pop-

ulation is slightly above 9,500,000 inhabitants. Note however that the demo-

graphic rates consider only females, so that, assuming 1 : 1 sex ratio and

equal survival of males and females, the total population would be around

19 millions.
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Fig. 2 The immigration function used in the simulations, and the resulting station-

ary population. Age-dependent immigration rate I(a) = Ii(a), where I = 100, 000

and i(·) is the function shown in the figure. The stationary population is obtained

with I(a) and the functions m(·) and π(·) shown in Fig. 1.

As for the distribution of the immigrants among the epidemic classes, we

have chosen

ix(a) = i(a)e−λia iy(a) = i(a)
λi

γ − λi

(

e−λia − e−γa
)

(40)

with λi = 4 (year)−1 and γ = 52 (year)−1; clearly iz(a) = i(a)−ix(a)−iy(a).

This amounts to assume that the source population (i.e the population where

the migrants come from) is homogeneously mixing by age, with an average

age at infection around 4 years, and moreover that migrants are not selected

from an epidemioloigcal point of view. Since γ is the recovery rate, this

corresponds to an average infectious period of 1 week.
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The contact rates are assumed to follow a WAIFW matrix, with values

tailored to the dynamics of measles in Italy [21].

Precisely, we assume that

β(a, s) =
∑

i,j=1,...,n

βijχIi
(a)χIj

(s) = βij , if a ∈ Ii, s ∈ Ij , i, j = 1 . . . n

(41)

where Ii = [ai−1, ai] are intervals partitioning [0, ω], i.e. 0 = a0 < a1 <

. . . an = ω.

In this case, we have

(Tψ)(a) =
∑

i

χIi
(a)

∫ ω

0

ψ(σ)n(σ)gi(σ) dσ

where

n(σ) = Bπ(σ) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

and

gi(σ) =
∑

j

βij

∫ ω

σ

χIj
(ξ)e−γ(ξ−σ) π(ξ)

π(σ)
dξ

so that the range of T is in the subspace, Vn, generated by {χIi
(·), i =

1, . . . n}.

Hence, the eigenvalues of T (and so its spectral radius) can be found by

looking at the finite-dimensional operator T : Vn → Vn that (after some

computations) can be represented by the matrix

Tij =

∫ aj

aj−1

k(σ)



βijQj(σ) +
∑

l>j

βilQl(al−1)e
−γ(al−1−σ)



 dσ. (42)

where

k(σ) = B +

∫ σ

0

Ix(s)

π(s)
ds, σ ∈ (0, ω),

Qj(σ) =

∫ aj

σ

e−γ(ξ−σ)π(ξ)dξ, σ ∈ (aj−1, aj), j = 1 . . . n.
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In the example, we chose n = 5 and the age grouping 0–2, 3–5, 6–10,

11–19, 19+ corresponding to main school grades in Italy. As for the matrix

β, the following structure used in epidemiological studies of the transmission

dynamics of measles in Italy [24,23] was adopted































β1 β1 β1 β1 β5

β1 β2 β4 β4 β5

β1 β4 β3 β4 β5

β1 β4 β4 β3 β5

β5 β5 β5 β5 β5































(43)

so that, through (42), we are reduced to the computation of the spectral

radius of a 5 × 5 matrix.

If (39) holds, it is easy to see that all terms of the matrix T are linear

in the parameter I (remember the definition (3) of B), so that the spectral

radius of T is a linear function of I. It is then easy to find the threshold value

of I, i.e. the value at which ρ(T ) = 1 that, with the numerical values specified

in Fig. 3, is I ≈ 74.6. As can be seen from (3)–(2), the population density at

demographic equilibrium is an increasing function of total immigration; thus,

we may as well consider the threshold as a function of population density P

obtained at P ≈ 7.1 million.

In Fig. 3 we show the equilibrium values of the proportion infected, Y/N ,

vs. the value of population density. It can be seen that, below the threshold

(P < 7.1 · 106), the proportion infected is very close to 0, while above the

threshold it rises sharply. It must be remarked, however, that the joint action

of BRF and immigration yields a stationary population density which is
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Fig. 3 The solid line shows the proportion infected, i.e.
R

Ȳ (a) da
R

n(a) da
, at the equilibrium

value of system (6) for different values of immigration rate I , corresponding to

different population sizes. π(·) as in Fig. 1, relative immigration rate as in Fig. 2.

The contact rate has the structure (41) with the matrix β given by (43). The

dashed line shows the proportion infected in a population with the same population

densities, mortalities and contact rates, but without immigration. Parameter values

are β1 = 1.254 · 10−5, β2 = 4.68 · 10−5, β3 = 1.16 · 10−4, β4 = 1.986 · 10−5,

β5 = 1.042 · 10−5; the ages used in (41) are a1 = 3, a2 = 6, a3 = 11, a4 = 19;

γ = 52.

significantly older compared to an underlying stationary through births and

deaths only population, as can be seen in Fig. 2.

In order to disentangle the effect of age structure from that of overall

population density, we considered a stationary population without immigra-

tion, that has however the same population density (and the same mortality,

but higher fertilities) as the population with immigration studied here. The
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dashed line in Fig. 3 shows, for each population density, the equilibrium in-

fection prevalence in a stationary population without immigration at that

population density.

Comparing the solid and dashed line in Fig. 3, one immediately sees that

a BRF population maintained by immigration has a much lower infection

prevalence (and a higher threshold for persistence) than a population where

stationarity follows from the balance of births and deaths only.

 0
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X
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X_noimm
Z_noimm

Fig. 4 The age distribution of susceptibles (X) and immune (Z) individuals at the

stationary equilibrium in a population with immigation ( imm) and in a stationary

population of the same total size without immigration ( noimm). All parameters

as in Fig. 3 with I = 100.

In order to understand how age structure affects this difference, we show

in Fig. 4 the age profile of the susceptible and immune individuals in the two
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cases. In a closed population maintained constant by births, susceptibles start

from a high level and drop quickly up to 20 years with a corresponding sharp

increase of immune individuals. In a corresponding population maintained

stationary through immigration, there are fewer individuals (hence, fewer

susceptibles) at young age, but the decline in susceptibles is much slower.

The BRF has a much smaller number of young individuals, hence a smaller

force of infection, since in our example contact rates are generally higher

among younger age-classes; moreover, most immigrants will have already

been naturally immunized in their countries, hence the force of infection is

not much larger in older ages. A similar effect of immigrants’ age on basic

reproduction ratio has been shown in [13] when contact rates have a separable

structure.

If we considered instead an infection with a long and asymptomatic in-

fectious phase, immigration from high prevalence countries might induce dif-

ferent effects [20] .

Looking carefully, one can also see a qualitative difference between the

shapes of the solid and dashed lines. The dashed line shows a sharp threshold,

with no infection below the threshold. On the other hand, one may note

that with immigration (the solid line) the proportion of infected individuals,

while displaying a sharp bend at the threshold, grows steadily also below the

threshold (we have a ‘quasi-threshold’). If we had chosen a smaller proportion

of infective immigrants, the curve would look sharper, as Theorem 3 states.

Finally, we analyse through simulations the importance of transients for

the model. To this purpose, we consider again system (6a), but with ini-
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Fig. 5 The age distribution of the population with constant fertility, mortality

and immigration rates at different times. See the text for more explanation.

tial conditions based on the current Italian demographic structure so that

n(a, t) = X(a, t) + Y (a, t) + Z(a, t) is not constant in time; hence, we also

changed the boundary condition (6b) to

X(0, t) =

∫ ω

0

m(a)n(a, t) Y (0, t) = Z(0, t) = 0.

In Fig. 5, we show the predicted demographic evolution starting from the

current Italian demographic structure with constant fertility and mortality

rates shown in Fig. 1, and immigration rate shown in Fig. 2.

In Fig. 6, we show the predicted evolution of the total number of in-

fectives under two different scenarios: in the first, we start from an initial

population inspired by the current demographic situation, as outlined above;

in the second, we start from the stationary population shown in Fig. 2; in
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Fig. 6 Total number of infectives vs. time. The solid line shows the solution of

(6) starting from the stationary population (3)–(2); the dashed line the solution

starting from the population shown, at t = 0, in Fig. 5. Parameter values are as in

Fig. 3 with I = 100, 000.

both simulations the initial fractions of susceptibles, infectives and immune

are close to what would be a stationary solution consistent with the force of

infection estimated for measles in the Italian population [21]. It can be seen

that the two simulations are rather different: starting from the current demo-

graphic situation, initially there are oscillations, close to a biennial period, in

the number of infectives, while starting from the stationary population one

needs (because the overall population density is lower) several years for the

susceptibles to build up enough to sustain an epidemic, followed by longer

and milder oscillations. Further on, however, the oscillations in the solution

“from current” damp out quickly, and, after a few decades, the number of
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infectives decreases steadily towards the equilibrium; on the other hand, the

oscillations in the solution “from stationary” persist over all 200 years of

simulations. It apppears then that the demographic transient has a strong

stabilizing effect on the epidemic oscillations, and this fact, not easily ex-

plained, has been verified with several other initial conditions.

Moreover, the influence of initial conditions can still be seen after 200

years of simulations, since the two solutions are still noticeably different.

Hence, the analysis of the stationary case, while it may emphasize relevant

quantities to consider, is not an adequate predictor of the dynamics of the

infection over a reasonable time horizon.

Acknowledgements We are strongly indebted, for this work, to Piero Manfredi,

that has suggested the relevance of the problem, has introduced us to the demo-

graphic literature, and has made several comments and suggestions on previous

drafts of this paper. Moreover, we thank two anonymous referees who made many

useful suggestions that have improved the presentation.

References

1. Amann, H.: On the number of solutions of nonlinear equations in ordered

Banach spaces. Journal of Functional Analysis 11, 346–384 (1972)

2. Anderson, R., May, R.: Vaccination against rubella and measles: quantitative

investigations of different policies. J. Hyg. Camb 90, 259–325 (1983)

3. Anderson, R.M., May, R.M.: Infectious diseases of humans: dynamics and con-

trol. Oxford University Press, Oxford New York Tokyo (1991)

4. Arthur, W., Espenshade, T., Bouvier, L.: Immigration and the stable popula-

tion model. Demography 19, 125–133 (1982)



39

5. Brauer, F., den Driessche, P.: Models for transmission of disease with immi-

gration of infectives. Mathematical Biosciences 171, 143–154 (2001)

6. Busenberg, S., Cooke, K., Iannelli, M.: Endemic thresholds and stability in a

class of age-structured epidemics. SIAM J. Appl. Math. 48, 1379–1395 (1988)

7. Cerone, P.: On stable population theory with immigrations. Demography 24/3,

431–438 (1987)

8. Diekmann, O., Heesterbeek, J.: Mathematical Epidemiology of Infectious Dis-

eases. Wiley Series in Mathematical and Computational Biology. John Wiley &

Sons, Ltd, Chichester New York Weinheim Brisbane Singapore Toronto (2000)

9. Diekmann, O., Heesterbeek, J., Metz, J.: On the definition and the compu-

tation of the basic reproduction ratio r0 in models for infectious diseases in

heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

10. Greenhalgh, D.: Analytical results on the stability of age-structured recurrent

epidemic models. IMA Journal of Mathematics applied in Medicine and Biology

4, 109–144 (1987)

11. Greenhalgh, D.: Threshold and stability results for an epidemic model with an

age structured meeting-rate. IMA Journal of Mathematics applied in Medicine

and Biology 5, 81–100 (1988)

12. Hethcote, H.: Asymptotic behaviour and stability in epidemic models. In:

P. van den Driessche (ed.) Mathematical Problems in Biology, Lectures Notes

in Biomathematics, vol. 2, pp. 83–92. Springer, Berlin Heidelberg New York

(1974)

13. Iannelli, M., Manfredi, P.: Demographic change and immigration in age-

structured epidemic models. Mathematical Population Studies 14, 169–191

(2007)

14. Inaba, H.: Asymptotic properties of the Inhomogeneous Lotka- Von Foerster

System. Mathematical Population Studies 1, 257–264 (1988)

15. Inaba, H.: Threshold and stability results for an age-structured epidemic model.

Journal of Mathematical Biology 28, 411–434 (1990)



40

16. Italian National Institute of Statistics: Demographic data.

http://demo.istat.it/ (2006)

17. Kato, T.: Perturbation theory for linear operators. Springer-Verlag, Berlin

Heidelberg New York Tokyo (1966)

18. Kohler, H., Billari, F., Ortega, J.: The emergence of lowest-low fertility in

europe during the 1990s. Population. & Development Review 4, 641–680

(2002)

19. Krein, M., Rutman, M.: Linear operators leaving invariant a cone in a Banach

space. AMS translations 10, 199–325 (1950)

20. Kretzschmar, M., de Wit, G., Smits, L., van de Laar, M.: Vaccination against

hepatitis B in low endemic countries. Epidemiol. Infect. 128, 229–244 (2002)

21. Manfredi, P., Cleur, E., Williams, J., Salmaso, S., dagli Atti, M.C.: The pre-

vaccination regional epidemiological landscape of measles in Italy: contact pat-

terns, effort needed for eradication, and comparison with other regions of Eu-

rope. Population Health Metrics 3(1) (2005)

22. Manfredi, P., Valentini, A.: Populations with below replacement fertility and

immigration: theoretical considerations and scenarios from the ‘Italian labora-

tory’. Riv. Int. Sci. Soc. 108(1), 61 (2000)

23. Manfredi, P., Williams, J.: Realistic population dynamics in epidemiological

models: the impact of population decline on the dynamics of childhood infec-

tious diseases. Measles as an example. Mathematical Biosciences 192, 153–175

(2004)

24. Manfredi, P., Williams, J., Salmaso, S., dagli Atti, M.C.: Measles elimination

in Italy: the projected impact of the National Elimination Plan. Epidemiology

& Infection 134(1) (2005)

25. Marek, I.: Frobenius theory of positive operators: comparison theorems and

applications. SIAM J. Appl.Math. 19, 607–628 (1970)

26. Schaefer, H.: Banach Lattices and Positive Operators. Springer-Verlag, Berlin

Heidelberg New York Tokyo (1974)



41

27. Schentzle, D.: An age structured model of pre- and post-vaccination measles

transmission. IMA J.Math.Appl.Med.Biol. 1, 169–191 (1984)

28. United Nations: Replacement migration: is it a solution to declining and ageing

populations? (2002)


