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We study a deterministic model for the dynamics of a population infected by macroparasiigs.
The model consists of an infinite system of partial differential equations, with initial and boundagy
conditions; the system is transformed in an abstract Cauchy problem on a suitable Banach spacg, and
existence and uniqueness of the solution are obtained through multiplicative perturbation of a Ii517ear
Cop-semigroup. Positivity and boundedness are proved using the specific form of the equations.
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The system of equations we analyse in this paper arises in the context of population
biology: it describes the dynamics of a population of individuals (“hosts”), infected by o#fe
species of macroparasites. The host population is age-structured and is subdivided i##to a
countable number of classes according to the number of parasites a host carries: forsach
i €N, pi(a,t) denotes the density of hosts of agbarbouring parasites at time. More 37

1. Introduction

precisely, if 0< aj < ap the integral 38
az 39
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/ pila,t)da “
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is the number of hosts that, at the timdnave age between anda, and carryi parasites; 1
the variablez is supposed to vary ifD, +00). 2

The dynamics of the host population is specified through the fertility and mortality rates:
for the sake of simplicity, we assume here that only fertility depends on population size,
while mortality is density-independent (seq pr [13] for a general background on the s
equations for age-structured populations). Moreover, we assume that parasites affect host

fertility and mortality according to the rules proposed1d]f 7
Namely, we assume that the fertility rate of hosts carryirngarasites isfi(a,p) = 8
Y (N)B(a)§', wherep = (po(a), pi(a), p2(a), ...) and 0

10
11

+Oo+oo
N = / Zpi(a)da (1.1 b
o =0 s
represents the total number of hosts. The parangd@k & < 1) describes the reductionin 44
host fertility per parasite harboured, the functif) specifies the age-dependence of ferys
tility, and ¢ is the function of the total population that represents the density-dependenge.
Hosts die at a natural death rai€a), to which a death rate > 0 is added for each
parasite carried. The parasites also die, at a constant death xafe 18
Finally, it is assumed that a host can acquire or lose one parasite at a time; the ,gpi-
demic spreads among hosts according to an infectiongr@dewhich, following [1], has

the following shape: 21
hP 22

1) = , 1.2
@) c+ N (1.2) 23
where 24
+00 4 o 25
. 26
P= / lei(a)da )

0 i=1

28
represents the total number of parasites in the population. 29
All these assumptions lead to the following infinite system of differential equations: 34
2 pila,1)=—2pia, 1) — (w@) + o) +i(a+0)pi(a,1) 3
+o(i +Dpiraa, ) +e@pi-1(a, 1), >0, z
+00 +oo i 13 =
PO(Oa t):I/I(N(t))fO ﬁ(a) ,'zopi(ait)é da, ' 34
pi(0,1) =0, i>0, 35
pi(a,0)=hi(a), =0, 36
whereN(t), P(t), ande(¢) are givenin (1.1) and (1.2), and_1(a, t) = 0. 37

To sum up, the equations in (1.3) are a model for an immigration—death process With
two nonlinearities: the first one due to the infection rate) and the second one because?
of the boundary condition that describes density-dependent fertility. 40

Infinite systems to model parasitism were first introduced in 1934 by Kost}ithft 41
wrote down a system of ordinary differential equations, involving birth and death rates,
coefficients of contamination, competition coefficient, all depending on the number of par-
asites in a host; however, in his paper only an analysis of the equilibrium points and tkeir
stability for some very special cases is accomplished. 45
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More recently, a system very similar to (1.3) has been investigated by Hadeler and
Dietz [6], and by KretzschmarlD,1]]. The difference between their models and ours ig
in the form ofy(¢), and in the boundary condition that is linear in their models: therefore,
host population would grow exponentially in absence of parasites, and, due to their cheice
of ¢(t), exponential solutions may exist also in presence of parasites. Their approach is
based on transforming the infinite system in a single partial differential equation satisfied
by the generating functio6 (a,t,z) =), pi(a, 1)z'. This method, however, works only 7
under specific choices for the transition rules; it seems, for instance, difficult to handke a
general nonlinear boundary condition in this approach. 9

Instead, we prefer to set system (1.3) within the framework of semigroup theoryidn
this approach, it would be possible to allow the coefficients, andé to depend rather 11
arbitrarily on the numbaer of parasites, and to use more general forms for the host fertility
and mortality functions, but, for the sake of simplicity, we stick to system (1.3) as written.

System (1.3) will be transformed into an abstract Cauchy problem of the form 14
p'(0) = AU + H)(p() + F(p(1)). >

0 (1.4) 1.

p©0) = p~, 17

where A is the generator of &p-semigroup andd and F are nonlinear operators on az1s
suitable Banach space. The multiplicative perturbation of a linear opefabyr means 19
of a nonlinear operatoH, that isA(I + H), was introduced by Desch et ab][to study 20
some differential equations with nonlinear boundary conditions, following previous wauk

on linear boundary conditiond]. They studied the Cauchy problem 22
’ _ 23

{p (t)—A0(1+H(t))p(t), (15) 2
pO)=p -

in a Banach spac&, where the linear operatot is the generator of &o-semigroup 26
on X. They found suitable, but general enough, hypotheses on the family of operators
H (1), that guarantee well-posedness for (1.5) eveR(H (¢)) ¢ D(A). We follow and 23
extend their results about existence and uniqueness of solutions to case (1.4). In Section 2
we give conditions for existence, uniqueness and continuous dependence of solutioss of
the Cauchy problem (1.4) In Section 3 we prove the positivity of these solutions unger
suitable assumptions. Finally, in Section 4 we show how these results can be applied to
system (1.3), proving global existence and uniqueness of positive solutions. In a sequsl to
this paper, this framework is used to study the equilibria of (1.3) and their stability. 34

35

36
2. Well-posedness of an abstract Cauchy problem 37

38
2.1. Existence and uniqueness 39

Throughout this sectionX, || - ||) will denote a Banach space add D(A) — X will 4
be a linear operator with domain(A) C X generating &o-semigroup’4 on X such that 42
le' Al < Me®, t>0, (2.1)

~
for someM > 1 andw € R. 45
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The Favard class of is
. 1 .4
Fa={peX:limsup—|le"”p—pl <+ooy,
PN T

which is a Banach space with the norm

; 1 a4
|plFy = ||P||+|lmSUIO;IIe p—rl

t—0t

Clearly,D(A) C F4 and, if X is reflexive,D(A) = Fy4.
We state a crucial property (se]) that we will repeatedly use in the sequel:fife
C([0, T]; Fu) then

t

/e(’_S)Af(s) ds € D(A)
0

© 0 N o g b~ W N P

e I
o b W N B O

and

[
(=]

t

A/e(’_S)Af(s)ds
0

forall0<r <T.
LetnowH : X — F4 andF : X — X be locally Lipschitz continuous, i.e., for &l > 0
there existL g, Kg > 0 such that

|H(p) = H@)|, <Lrlp —qll. |F(p) — F@)| < Krllp —4l (2.3)

forall p,q € X such that|p||, ll¢ll < R. ”8
We are now ready to state the result (s&8g bout existence and uniqueness of solu£7
tions. Letp® € X be fixed and consider the abstract Cauchy problem

{ p'(1)=A(pt)+ H(p(1) + F(p()), (2.4)
p(0) = p°. B

31
Theorem 2.1. Let A: D(A) — X be a linear operator withD(A) C X which generates a 3.
Co-semigroupe’4. LetH : X — F4 and F: X — X satisfy(2.3). Then 33

= e
o ~

t
< M/e“’(’_s)|f(s)|FA ds (2.2)
0

N NN NN
A W N B O ©

25

28
29

(a) For eachp® € X there exists a unique mild solution (#.4),i.e., a continuous function 3s

t — p(¢) satisfying the integral equation 36

t t 37

p(t) = p° + A/e<’—S>AH(p(s))ds +/e<’—S>AF(p(s)) ds; (2.5) 2:

0 0 40

(b) If [0, rmax) is the maximal interval of existence of the solution, thgg = +oo or a1
lim,_, - Ip®Il = —+o0; 42

(c) If H and F are continuously differentiable ang® + H(p°)) € D(A) thenp(r)isa 43
classical solution of(2.4), i.e., p(¢) + H(p(t)) € D(A) for eachr € [0, tmax), p(t) is 44
differentiable and satisfies E(R.4)for eachO < 7 < fmax. 45
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Sketch of the proof. The proof is with minor modifications that is]. We give a sketch 1
of the proof of part (a), since the tools introduced will be useful later.Fer0 introduce 2
the projectionmg : X — X, 3
x o fIxI<R, ’
TROD=1 X R if x| > R, 5
TxT 6
and define 7
8
Hr(x):=H(7r(x)) and Fr(x):=F(mr(x)). (2.6)

The mapsHr and Fr are globally Lipschitz continuous, with Lipschitz constanis2and 10
2K, respectively. Then consider the integral operatar  defined on the Banach spaceut
C(0,T], X), 12

t t 13

(Vpo’Rq)(t)=e’Ap0+A/e(’_s)AHR(q(s))ds+/e(1_S)AFR(q(s))ds. 2.7)

0 0 16
Itis easy to see that, faf small enoughV 0 x is a contraction so that a unique continuous?
solutionpg (¢) of 18
¢ ¢ 19

20

gt)=e4p%+ A / U4 Hp(q(s)) ds + / "I FRr(q(s)) ds (2.8)

0 0 22

exists. Repeating the same argumentWgg () z, C([T, 2T1], X) and so on, one sees that23
a continuous solution of (2.8) exists foe [0, +00). Now, takingR > ||p|, the solution 24
will satisfy, for smallz, | pr(¢)|| < R, whenceHg and Fg can be replaced by andF in 25
(2.8) andpg (¢) is the local solution of (2.5). O 26

27

2.2. Continuous dependence on initial data 28
29
We prove here that the mild solution of the abstract Cauchy problem (2.4) depe¥ds
continuously on the initial datum. Continuous dependence is part of the classical definition
of well-posedness. In the following we denote pg, p°) the mild solution of (2.4) with 32
initial point p°. 33
34
Theorem 2.2. Let p° € X and let(g,)nen be a sequence i converging top®. Then for 35

eachr > 0 such thatp(z, p°) exists, we have 36
. 37
lim p(t, g.) = p(t, p°) -

n—>oo
and the convergence is uniform foe [0, T'], whereT > Qs such thatp(T, p°) exists. jz
Proof. Let[0, T C [0, ftmax), R > 2max<: <7 |1 p(t, 9| and recall the definition oflz “
andF in (2.6). If pr(z, g») and pr(z, p°) are the mild solutions of the equatigni(r) =

A(I + Hg) p(t) + Fr(p(1)) with initial valuesg, andp®, respectively, set

42
43
44

wRr. (1) == pr(t, qn) — pr(t, PO). 45
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If w, := g, — p° we can write
13

wr. (1) = e w, + A / A (Hr(pr(s,qn)) — Hr(pr(s, p°))) ds

0
t

[ N E(p.00) = Pl 1) .
0
It follows that

t
|wra(®)] < Me® wn] + / Me®"D|Hg (pr(s.qn)) = Hr (pr(s. p2)) |, ds
0

t
+ f M9 Fr(pris, an) — Fr(prs. p%)| ds
0
t
< Me® |wy || + 2LRM/ew<’*S>|| WrA(s)| ds
0

t
1 2KM / 0w u(5)| ds.
0

From this, multiplying each member ley“* and using the Gronwall's lemma, we obtain
|wran (@) < Mljwy e ERFEKRDFON < pf[ay, | PM LrtKr)+e DT (2.9)
whereowt = maxw, 0). SetCg.1 := 2M(Lg + Kg) + @*)T. Forn such that

R —2maxg <t Ip(t, pOl
MeCrT

lwall = llgn — p°Il <
it results thatjwg , ()| < R —2maxg<r Ip(t, 9| and hence
Iprt.an)| < |wra® ] + | Pr(t. PO < R - 2 max | p(t, PO + | pr. p%]-

Because of the choice &, pr (¢, p°) = p(t, p°) in [0, T'] and therefore

bl

lpr. P2 < ZOQ?(T”P(L PO

whence|| pr(t, g,) || < R and finally pr (¢, g4) = p(t, g») in [0, T]. Replacing in (2.9) we
get

[Pt 4) = pa. PO < Mg — PO,

which clearly proves the statements

© 0 N o g b~ W N P
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3. Positive solutions 1

2
Our model system (1.3) describes the dynamics of a host population infected by para-
sites; therefore, the only solutions that make biological sense are positive solutions. When
using the abstract formulation (1.4), Banach lattices (8p&fe the natural abstract frame-s
work. By definition a (real) Banach lattice is a real Banach sgacd - ||) endowed with 6
an order relation< such that(X, <) is a lattice and the ordering is compatible with ther
Banach space structure &t 8
The order is completely determined the positive cone ok whichis X ={pe X: o
p = 0}. This means thap > ¢ ifand only if p — g € X It is easy to verify thaX is 10
a closed, convex set. For instanceXif= L1(£2, ©) and < is the natural order between 11
functions, therX, ={f € X: f(w) >0, n a.e.inf2}. 12
13
Definition 3.1. A linear operatofl : X — X is calledpositiveif Tp € X forallpe X;. 14
15
We are now able to state the main result of the section. 16
17
18
19

Theorem 3.2. Let X be a Banach lattice and led be the generator of a positive
Co-semigroup onX, i.e.,e'AX, c X, for all r > 0. Suppose that for eacR > 0 there

existse € R, o > 0, such that 20

(I +aFRr)X+ C Xy 21

and 22
P 23

24

A / U A D fp (u(s))ds e X4 forallue C([0, T1; X4), e

0 26
whereF and H satisfy(2.3), and Hz and Fx are defined in2.6). Then, ifp® € X, then 27
p(t, p%) e X, forall 1 € [0, tmax)- 28
29

We need first the following lemma. 30

31
Lemma 3.3. Let X be a Banach space, let> 0, R > 0, andp® € X, and letHg and Fz 32

be defined as i(2.6). A functionr — p(¢) satisfies the integral equation 33
t t 34
p@t) = etApO + A / e(’*"')AHR(p(s)) ds + / =4 Fp (p(s)) ds, t>0, (31 *
36
0 0 37
if and only if it satisfies the integral equation 38
t 39
o(0) =e’(A—’/°‘>p°+Afe(’—”(A—’/“)HR(p(s))ds 40
0 41
42
t

1 [ J=s)a-1/a) “
+—/e( VAL + aFR)(p(s))ds, t>0. 32 .

o

0 45
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Proof. Let pr(¢) be the unique solution of (3.1) and Igk «(¢) be the unique solution of 1
(3.2) (by the same arguments sketched in the proof of Theorem 2.1 it is easy to seezthat
Eq. (3.2) has a unique global solution). From Gronwall’'s lemma, it is easy to see thatsthe
functionspg (1), pr.« (1), f(t) := Fr(pr.« (1)), andh(t) := Hr(pr,« (1)) all satisfy 4

nt >

lpr®|. [ PO, [ D], |2@)] < Ke )

for suitableK > 1 andp > 0. 7
Hencepg, pr.o, f(t), andh(t) are Laplace transformable for Re- . From (3.2) it 8
follows that °
1 -1 1 -1 ”
ﬁR,a(A)=<A+——A) p°+A(A+——A> h()\) 1

o o 12

1 1 -1 . o 13

+ a()x-l- E —A> (PR,a()‘)‘Faf()\))a 14

15

and applyingx — A)~! to each member, one obtains, using the resolvent identity, 16

O=a —A) PP +aAG — A) M) +ah — AL ()

-1 -1
1 0 1 r 19
—a|([r+——A p +AlA+——A h())
o o 20
1 1 -1 ~ 21
+ a ()» + ; - A) (ﬁR,aO\) + af()»))i| 22
1.0 17 1z N 2
=a[(k —A)Tp HAC-ATRA) + A=A ) — PR,a()»)]. 24
This implies =
N N 26
PrRaM) == AP0+ AL — AT + 0. — AT ) 27
and hence 28
¢ ¢ 29
30
PR.a(t) = etApO + A / e(tfs)AH(pR,a(s)) ds + / e(’ﬂ)AF(pR,a(s)) ds. s
0 0 32
The same steps in the opposite order show that the converse is also true and the clain is
proved. O 34
35
Proof of Theorem 3.2. Fix T < tmaxandR > SUR< < lP (@, P9 36
Choosax > 0 such that/ + o« Fr)u > 0 if u > 0. Consider the nonlinear operatdy g 37
onWr =C([0, T], X), 38
39
t
40
[Va k01() 1= e A1/ 50 1 4 / A Hy (u(s)) ds a
0 42
1 t 43
. / A=/ 4 o Fr)v(s) ds. 44
o 45

0
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Because of the positivity of th€p-semigroupe’ (4~//*) and the choice of, V, g is 1
positive, i.e.,Vo (W) C W, whereW, := C([0, T1, X+). Moreover,W; is closed in 2
Wr and hence complete. Hence, the fixed pqigitof V,_ g, that is the unique solution of 3
(3.2), satisfiesjg € W;. By Theorem 3.3¢ satisfies also (3.1). Furthermore, as far as
llgr ()| < R, it satisfies

1 1

qr()=e"p°+ A / e""INH (qr(s)) ds + / e""AF (qr(s)) ds
0 0

© 0o N o O

and hence coincides with(r, p°). Because of the choice & it follows that||gz (r)|| < R

for eachr € [0, T'], whence 1
12

qr(t) = p(t. p°) 13
on[0, 7] and therefore (¢, p°) is positive on the same interval. 14
lterating this argumenp(z, p°) is shown to be positive ofD, fmax). O 15

16

Remark 3.4. Note that, under the assumptions of Theorem 3.2, we only nee@i'thatl H 17

are defined orX ;. in order to construcp(z, p°) for p® e X . 18
19

20

4. Application to the model for parasitic infections 21
22

To prove the existence of a solution for (1.3) we transform it into an abstract Cauéhy
problem of the form (2.4) and then apply the results obtained in the previous sections.24

The space in which the equation will be studied is 25
+00 +oo zj

X = :p = (pi)ien: pi € LY0, +00), Vi >0, Zi / |pi(a)|da < oo} 28

=l 9 29

endowed with the norm 30
+oo oo +oo 31

Ipl = /\po(a)\da+2i/|pi(a)\da. -

0 i=1 o

Itis easy to see thdlX, | - ||) is a Banach space. 35
About the functiong: andg we assume the following (see for instanéé]): 36

(H1) u measurable, positive and there existvaluesu suchthatO< u_ < pu(a) <puy 38
fora.e.a € [0, +00); 39
(H2) B € L*°[0, +00), B(a) > 0. 40

Finally, a minimal assumption on the functignthat allows for global existence of solu- 42
tions is 43

(H3) ¥ € CL([0, +00)), ¥(s) = 0, MaXxc(o,+o0) ¥ (s) = 1. 45
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Note that max/(s) = 1 is simply a normalization, since any constant can be insertedin

the functiong. 2
If we assume that host population growth is of generalized logistic type, we can assame
instead 4
5
(H3) ¥ € C1([0, +00)), ¥(0) = 1,9 (s) <O, lims_, 1o ¥ (s) =0. 6
7
Another condition is needed to obtain a parasite-free stationary solution of (13} If
(po(a), p1(a), ...) is a stationary solution of (1.3) correspondingste- O, thenp;(a) =0 9
fori > 0 andpo(a) = po(0)7(a), wherer (a) = e~ Jo #()ds Setting 10
+00 1
12
Ro= / Ba)m(a)da, 1
0 14
it can be easily seen that there is a stationary solutionith0 if and only if there exists 15
K > 0 such that 16
1 17
Y(K)= Ro’ 18

19
that is if and only ifRg > 1, because of (H3. In such a case it is unique. Under (H3

if Ro < 1, it is not difficult to show that the host population will decrease to 0 (see fgr

instance T]). Hence, a usual assumption will be 2
23
(H4) Ro> 1. 24
25

We show the well-posedness of system (1.3) by setting it in the abstract framework (1,5).
With this aim, we define first the linear operatbion X, >7
D(A)={pe X: pie WH1(0,+00), p;(0)=0, Vi >0, and such that 28
29
there existsV € N such thatp; =0 foralli > N}, 0
(Ap)i(a) == —pj(@) — (n(@) +i(@+0))pi(@) + (i + Dopiri(a) fori>0. 31
4.1 *
_ 33
As we will prove belowA is closable and its closuré generates &g-semigroup orX. 5,
Let now 35
4oo TG 36
E::ipeX:c—i—Z/pi(s)ds;ﬁO, 37
i=0 0 38
and consider the nonlinear operafor E — X defined by jz
(F(p))g = — " EmLl 0 pila)da “
P))og=— Po; 42
0 c+ YT 0+°o pi(a)da 4
Ry % pi(a)da ) 44

(F(p)), = —==20 & (pica—pi). i=1

c+ Y5 o pila)da 45
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Finally, the ‘multiplicative perturbation’ operator that takes account of the nontrivial

boundary condition in (1.3) (seé&][for more details) is 2
+00 4 oo 400 Lo 3

(Hp)o(a) =—y ( / Y pils) ds) ( / B(s) Y pi(s)§’ ds)n(a), :

o i=0 0 i=0 6

(Hp);=0 fori>1. 7

H is an operator oiX such thatp + Hp) € D(A) if and only if the components gf are Z

in wl1 andp satisfies the boundary conditions

+00, o0 +oo Lo | N
Po® = ( | re ds) ( [ 80 nos ds>, "

0 i=0 0 i=0 13
pi(0)=0 fori>1, 14

which are exactly the boundary conditions in (1.3). 1

Hence, the evolution equation (1.3) has been transformed into the abstract Cauchy é?ob—

lem
18

p'®)=A(p(t) + H(p(1)) + F(p)), 1
0 4.2)
P(O) =D . 20
To prove that (4.2) is well-posed we start with 21

22
Theorem 4.1. The linear operatot is closable inX, and A generates a positive, strongly 23
continuous semigroup of contractions. 24
25
Proof. We will prove thatA is dissipative, thaD(A) = X andR(ALI — A) isdense inX 26

for A > 0. 27
In fact, by Theorem 4.5 in1[2], under these assumptiodsis closable and is dissipa- 2s
tive too. 29

Moreover, if A is dissipative andR(LI — A) is dense inX, thenR(AI — A) =X.In 30
fact, takey € X, (x»).en Sequence irD(A) such thatx, — Ax, — y. Since, because of a1
the dissipativity ofA, we have|(Al — A)(x, — xm)|| = Allx, — xp|| @and the left-hand 32
side is a Cauchy sequence by assumption, it follows that the right-hand side is also a
Cauchy sequence; therefore, there exists X such thatx, — x; we can then conclude 34
thatAx, — Ax —y which implies, by the definition of closure, that A andAx = Ax—y. 35

This meangi/ — A)x =y so thatR(A] — A) = X. ) 36
At this point, applying Theorem 4.3 iriP] to A, we can conclude that generates a 37
Co-semigroup of contractions. 38
Finally, the positivity is shown by direct computation. 39
To prove thatA is dissipative consider theubdifferential of the norpi.e., forx € X, 40
x#0, 41
dxll={p e X*: (9, x)= x|, llol =1} (4.3) z

and

44
30l = {p € X*: llpll < 1}. 45
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One has to show that for evegye D(A) there isq* € 3||¢| such that{Aq, g*) <0 (the 1
brackets denote the usual duality product). ket O this is trivial. If ¢ # 0 it is known 2
(see, for instance3]) that, via the identification 3
4
Xt = {90 = (@i)ien: @i € L%(0,400), supllg;| < —|—oo}, .
ieN 6
@ € d]lq| ifand only if foreachi =0, 1,2, ..., 7
8
gi(a)=1 ifae 2 ={se[0, +00): gi(s) >0}, 0
pi(a)=-1 ifae.Qf:{se[O, +00): q,-(s)<0}, 10
11
~1<pi(@ <1 ifaeR)={se[0,+00): gi(s) =0} @4.4)
Hence 13
14
= 15
<Aq,¢>=2i[ [ aoada- [ (Aq),-(a)da} :
i=1 fons 2 17
18
+ [(gn@da- [ (Agn@da o
_Qo+ QO— 20
21
+00
. / . . 22
=) i / (—gi(a) — (n(@) +i(a+0))gi(a) + o (i + Dgit1(a)) da v
i=1 ar ”
+00 25
- Zi / (—gi(@) = (w(@) + i@ +0))gi(a) + 0 (i +Dgit1(a))da %
i=1 27
2.
i 28
+ / (—qo0(@) — n(@)qo(@) + oq1(a)) da -
2F 31
, 32
- /(—qo(a) — w(@qo(a) + o q1(a)) da, (45) 4
24 34

w
(&)

whereg € d|q|| has been chosen such that, for eacky; = 0 in .QP. Now, sinceq; € 36
W10, +00) for everyi, 22" is the union of a family, at most countable, of pairwises

disjoint intervals, i.e., 38
+00 39
‘Qi+ = U (a;lfl’ a;z) “
41
n=1
) . 42
with qi (a’}) =0if a;. eR and 43
lim ¢;(@)=0 “

a%a;. 45
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if a; = +oc. In fact, for the latter assertion, observe thate W1(0, +o0) = ¢; €
BY(0, +00) N LY(0, +00); sinceq; € L1(0, +00), liminf,— 1 |gi(a)| = 0; sinceq; €
BY(0, +00), limsup,_, | o gi(@)| = liminf,— o0 |gi (@)]. It follows that lim,— 100 i (@)
=0, which is our claim.
Hence
/ g/(a)da =0,
o

© 0 N o g b~ W N P

in an analogous wa),{,‘g__ g;(a)da = 0. Rearranging the sums in (4.5) (remember that aﬁ

the sums are, in fact, finite) we get

+

+o0 o0
<Aq,¢>=—2i/(u(a)+ia)qi(a)da+ i/(u(a)+ia)qi(a)da
i=1 1 y

i=

of ,
+o0
+UZ|:—/i2q,-(a)da+/izqi(a)da+ / (i — Digi(a)da
e 2 20
- /(i—l)iqi(a)da}ra( /ql(a)da—/ql(a)da)
2,4 g 29

—/M(a)qo(a)daJr/M(a)qo(a)da

25 26
oo T +00
=-Yi / (1(@) +ia)|gi(a)|da — / n(a)|qo(a)| da
=1 o 0
+00
—O’Z|: / igi(a)da + / i(2i —1)gi(a)da
i=2kornat, 2ne .,
— / igi(a)da — / i(2i — Dgi(a) da]
27N27 4 ernet,
- 2(7( / qi1(a)da — / q1(a) da) <0. (4.6)
ofneg 7Ny

Clearly, D(A) = X and hence, as argued aboveis closable and! is dissipative. Now,

12
13

44

to prove thatR(AI — A) is dense inX for all » > 0, it is sufficient to prove that for each 4s
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p € D(A) there existgy € D(A) such thatkg — Aq = p. Suppose thap; =0 fori > N;
then takey = (¢;);en Such thay; = 0 fori > N andgy is the solution of
gy(@) = =0+ p(@) + N(a+0))gn(a) + pn(a),
4.7)
qgn(0) =0,
ie.,
an@= [ OONED (5 (4.8)
0
Then, fori < N, ¢; is the solution of
{ g/(a)=—O0+ p(a) +i(x+0))gi(a)+ pi(a) + o (i + Dgit1(a), 4.9)
gi(0) =0, '

whereg; +1 has been found in the previous steps.

Clearly,q € D(A), and by constructiong — Ag = p which proves our claim.

To see that the semigroup is positive, tages D(A) N X and suppose thaf = 0 for
all i > N. The solution of

{q’(t) =Aq(1),
q(0)=¢°
can be constructed as follows. Fot N, ¢;(a, t) = 0 solve the equations. Foe= N the
problem

(4.10)

Dan(a.t)=—2qn(a, 1) — (u+ N +0))gn(a, 1),
qn(a,0) =g (a)

has the solution defined by

gn(a,t) =qn(a—t, O)e_f:ft“(SHN(“"’U)ds, a>t
qN(aat)=07 t>a

Fori < N the problem

Oa
0

VWV

Lgita.)=—Lqgi@a.n)— (w@) +il@+0)gi(a.n)+o+ Dgiyi(a, ),
gi(a,0) = g2(a)
has the solution defined by

a

gia.1) = gi(a —1t,0)e Jar N (ecto) s
+@G+1 fé Ueff:ftﬂ“(r)+N(°‘+“)drqi+1(a —t+s,8)ds, a>t>0,
gi(a,t)=0, t>a=>0.

Clearly the solutior (1) = (i (-, ))ien € X+. By density, the same will be true f@quO
for all ¢° € X, that is the semigroup generatedbys positive. O

From now on, we will writeA meaning, in fact, its closurd whenever this will not
cause ambiguity.

© 0 N o g b~ W N P
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Proposition 4.2. H(p) € F4 forall p € X.

Proof. Itis H(p) = (C(p)x(-),0,0,...), whereC(-) is a real function, precisely

+OO+00

C(p) = —w(/ Zp,(a)da><//3(a)2pl(a)é da)

P.15 (1-21)
by:SL p. 15

15

N o g WN P

Moreover, if p = (po, 0,0, ...), !4 p is represented by the well-known [I] sem|group8

of age-structured populatlons without fertility, namely

(¢4 p)o = {po(a —1) njza(‘i)t) if a>t,
0

ifa<t,

and(e’4p); =0fori >1
Hence, for each > 0, we have

1y 44 1
Lletip — tp| = [ e da
whence
t

_ 1, .4 1
limsup=|e'*(Hp) — Hp|| = lim —/|C(p)|rr(a)da=|C(p)|
o+ I t—0t+ t

0

and thereforéd (p) € F4. O
Before stating the main result we need two more lemmas.

Lemma4.3. Leta > 0. The operatoi/,, on Wy = C([0, T'], X) defined by
t
[Uaul(t) := A / ATV g (y(s)) ds
0
is positive, i.e., it takes positive functions into positive functions.

Proof. Set
t

I (u):= / ef(tfs)/“e(tfs)AH(u(s)) ds
0
Itis easy to see (see, for instancd) that

otherwise,

e—(t—s)/a[e(t—s)AH(u(s))] () = { e~ U=/ Cu(s)m(a) fa>t—s,

and
e H (u(s))]. (@) =0 ifi>1

10
11
12
13
14
15
16
4.11) .,
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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Hence,l; (1) has a unique component not identically zero, which is
e (a) [1es/*Cu(s)) ds if t <a,
[Lw]g@ =1 _, @ .
e /‘”‘n(a)ft_a SCw(s))ds ifr>a.
Finally,
[A(I (u))] (@) = 0 if r <a,
PO T el (@) Cu(t —a)) i1 >a,
and [A(l;(u))]; =0 if i > 1. If u(s) > 0 for eachs € [0, T] then C(u(s)) < 0 and
[A(I;(u))]o = 0, which proves the claim. O
Lemma 4.4. For eachR > Othere existsx > 0 such that(/ + «Fp) X+ C X.

Proof. Takeu > 0; then, settingi = 7z (1), we see thatl + o Fg)u > 0 if and only if

. 400 -
O‘hZ;:(iJfooouj - _
oo o= Wi-1—ui) +ui =0

C+Zj=o o Uj
for eachi > 0, always setting 1 = 0. Recalling that & u; < u;, we see that this inequal-
ity is true for alli if 1 — ag (i) > 0, where

. 400 -
1250 Jo sy ds
c+ j:% 0+oob_tj(s)ds.

Since it can be easily seen thati) < hR/c, the thesis holds i < c¢/(hR). O

pu) =

Finally, we are able to state

Theorem 4.5. If (H1)—(H3)hold, the Cauchy problem ax,
{ p'(t) = A(p(t) + H(p(1))) + F(p(1)),
p(0) = p°,
whereX, A, H, and F have been defined above, hasp%e X, a unique mild solution
in X If moreoverp® + H(p®) e D(A), then the mild solution is classical.

(4.12)

Proof. It follows from Theorems 2.1 and 3.2 (see also Remark 3.4).
In fact, it can be easily seen that the mapand H are Lipschitz continuous and differ-

© 0 N o g b~ W N P

A L L
N o o0 W N B O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

entiable onX ;. because of the hypotheses#rand 8. Moreover, Lemmas 4.3 (the same3®

proof, with the necessary and obvious adjustments, works Hithinstead ofH) and 4.4
show that the assumptions of Theorem 3.2 hold.

37
38
39

The remaining of the section is devoted to prove that the solution yielded by Théb-

rem 4.5 is, in fact, global.

Proposition 4.6. Let (H1)—(H3) hold. Let p(r) = (p; (-, 1))ien be a positive solution of
(4.12)defined orf0, rmax). Then there exists > 0 such that| p(¢)| < || p(0)|lel for each
t € [0, tmax) -

41
42
43

45
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Proof. First, we prove that the a priori estimate holds if the initial datum is taken inia

smaller domain, then, by a density argument, we conclude that the same is true for all
0

peX. 3

Consider the Banach space 4
+00 00 Z

X1 := {p:(p,'),'eNZ p,’ELl(O, +00), Vi >0, Zi2/|pi(a)|da<00, ;

=l 9 8

endowed with the norm 9
+00 +00 +00 10
||p||1:=/\po(a)\da+2i2/\pi(a>|da. .

0 i=1 1

The operatod defined in (4.1) satisfies Theorem 4.1 als&ipy one needs only to modify 14
(4.6) in a straightforward way. Hencé, the closure ofA in X3, generates a positive, 15

strongly continuous semigroups of contractions. Consider now 16
"MH=A t) + H1(p(t F v

{ p'() 01(19( )+ Hi(p(®))) + F1(p(©)), (4.13) 1

r0) =p", 19
whereFy := F|x,ng andHy := H|x,. 20

Itis not difficult to prove thatd; and F; are locally Lipschitz continuous with respect to21
|11 and|- lFp(Ay and are continuously differentiable ¢K1)... Moreover, Proposition 4.2, 22
Lemmas 4.3 and 4.4 can be rephrased for the s§aand the operatord, F1, Hy. The 2
conclusion is that problem (4.13) is well-posed(@fi) . 24

Now, if p(t) = (pi(a, t));en is a classical positive solution of (4.12) with the additiona#s
hypothesis thap® + H (p®) € D(A1) thenp(r) is a solution of (4.13). Therefore(r) € X1 26

for all 7. 27
For a positive solution|| p(¢)|| = L(p(t)), whereL is the bounded linear operator, de-28
fined by 29
30

+o00 +o0 +00
. 31
Lp:= / po(a)da—i—Zl / pi(a)da. 2
0 i=l 33

34
35

SinceL is a bounded linear operator éhandp € C1([0, T, X), we have

36
37

S 1pl = L(p0)) = L)

+o00 5 +00 +00 P 38
= / EPO(a’ t)da +Zi / Ep,-(a, t)da. (4.14) jz
0 =10
41
Now, fori =0, 1, 2, ... we have "
+0o0 3 +0o0 P +0o0 43
/ —pila,t)yda < — / —pila,t)da— /(uf+<0(t)+i(a+0))pi(a,t)da a4
ot da 45

0 0 0
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+00 +00 1
+ / o(i+Dpiyi(a,t)da+ / p®)pi-1(a,t)yda  (4.15)
0 0 3
setting, as usuap_1 = 0. As already showry; (a, t) are, for allz, absolutely continuous *
function in the variabler, satisfying lim,—. « pi (a, 1) = 0. Hence, from (4.15) we obtain °
6
+00
9 7
/ Epi(a,t)daépi(O, 1) — (- 4@ +i(@+0))P(1) 8
0 9
+ 0@ + 1) Piy1(t) + o) Pi1(1), (4.16) *°
11
where 1
co 13
Pi(1) =/pi(a,t) da. 14
0 15
Inserting (4.16) into (4.14), we have 13
d +00 +00 18
Z PO <=2 (n-+o@) +i@+0)iPi0) + Zm‘(z‘ + P 19
i=1 i=1 20
+00 21
+9(1) Y i Pio1(t) + po(0, 1) — (1 + ¢(1) Po(t) + o P1(t) 2
i=1 23
+00 +00 +00 +00 24
=—p-) iR —¢0) Y iPi@W) —a ) iPi(0)—0 Y i?Pi(1) 25
i=1 i=1 i=1 i=1 2
+00 +00 +00 27
+0 Y (+D?Pa®)—o Y (+DPa®)+e) Y iPiat) 2
i=1 i=1 i=1 29
— (u— +¢@)) Po(t) + 0 P1(t) + po(0, 1) 30
+00 +00 sl
—u-|p@| —a) PP =0y (i +DPia() 2
i=1 i=1 33
34
+91) Y Pi(t) + po(0, 1). (4.17) s
i=1 36

Note that all the series converge, and all rearrangements are justified because, for eé
p(t) € X1 whence)_ "% i%Pi(t) < oo.

Thus 39
40

41
42
43

hZ 1iPi(@) 44
+c+2+—°°P(t)<ZP(t))+”'BHLOCZPU) i

d 400 +00
SOl <—u-fp®] - iP0 =Y G +DPiaw0

i=1 i=1



© 0 N o g b~ W N P

A B B DD DWW WWWW W W WWN N NDNDNDNDNDDNDNDNDNDN R R R R R R R R R
a A W N P O © 0 N O O b W N P O ©W 0 N O O B W N P O © 0 N O O W N P O

S0022-247X(03)00295-6/FLA AID:8634 Vol.eee(eee) 1
ELSGMLTM(YJMAA) :m1 2003/05/02 Prn:13/05/2003; 11:17 y1m33863

A. Pugliese, L. Tonetto / J. Math. Anal. Appée (eeee) eee—see

<[h+ 1Bl = u-]]pO)|
and then|p(@)|| < || p(0) e HIBlI—1-)r,

By a density argument the same estimate holds fop%# X, .

Corollary 4.7. If p° € X, then the mild solution of4.12)is global.

Proof. Apply Theorem 2.1(b). O

Finally, we wish to show that, under assumption (K&he positive solutions are ulti-

mately bounded. Precisely

Theorem 4.8. Let (H1), (H2), and(H3') hold; assume moreover

(H5) suda: B(a) > 0} < +o0.

Then there existaf such thatvp® € X, N(t) < M, andP(r) < M forall r > T for some

suitableT .

Proof. Choose initiallyp® such thatp® + H (p°) € D(A1).
Take

u(a, )= pi(a,i)

i=0

the age-density of total host population. With some algebra, we have

e¢]

%u(a, t)=—u(@)ua,t) —a Zip,-(a, t)=—p(a,tHu(a,t)

i=0
with
fi(a. 1) = wia) + aiz%o(iap;ga’t) if u(a,t) >0,
w(a) if u(a,r)=0.

Analogously, one can write
o
u(0,1) = / ,g(a, t, S(t))u(a, t)da
0

with
Bt sy | POB@ERELED it y(q 1) >0,
v(s)B(a) if u(a,t) =0,

andS() = N().

One can then apply Theorem 1 @ fto obtainN(¢z) < M for ¢t > T. In that theorem

P.19 (1-21)
by:SL p. 19

19

(4.18)

(4.19)

the fertility and mortality functions are not supposed to depend directly onrtiimet it is
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straightforward modifying its proof to cover this case, since assumptions (16) and (17) of
that theorem are satisfied. Moreover, assumption (H5) can be used in place of the maximal
ageat < oo used in B. 3

Now, we computeP’(r) as in (4.17), obtaining 4
= ;

P'(t) < —u—P(t) —a ) i?Pi(t) = P(1) + ()N (). .

i=1 8

From Holder’s inequality, we have 9
10

*fl.z . (Z,_O iP(1)* _ PA(1) "
e _0 D P N(t) 12

13

Using alsop(t) N(t) < hP(t), we obtain 1
P()<(h—p_)P() P20 _ Po)(h % Pt .

< — U —o < — U — — .

# N() M :

From this, one immediately sees limsup, P() < M(h — pu—)/a, which is the thesis.  1s
By density, the same will hold forap® e X,. O 19
20

21
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