
Digital Object Identifier (DOI):
10.1007/s00285-004-0266-6

2 8 5 0 2 6 6
Jour. No Ms. No.

B Dispatch: 9/2/2004
Total pages: 28
Disk Received �
Disk Used �

Journal: J. Math. Biol.
Not Used
Corrupted
Mismatch

J. Math. Biol. (2004) Mathematical Biology

Andrea Pugliese · Lorenza Tonetto

Thresholds for macroparasite infections

Received: 27 December 2002 / Revised version: 14 November 2003 /
Published online: 2004 – c© Springer-Verlag 2004

Abstract. We analyse here the equilibria of an infinite system of partial differential equa-
tions modelling the dynamics of a population infected by macroparasites. We find that it is
possible to define a reproduction number R0 that satisfies the intuitive definition, and yields
a sharp threshold in the behaviour of the system: if R0 < 1, the parasite-free equilibrium
(PFE) is asymptotically stable and there are no endemic equilibria; if R0 > 1, the PFE is
unstable and there exists a unique endemic equilibrium. The results mainly confirm what had
been obtained in simplified models, except for the fact that no backward bifurcation occurs
in this model. The stability of equilibria is established by extending an abstract linearization
principle and by analysing the spectra of appropriate operators.

1. Introduction

The fundamental role of parasites in structuring animal communities is now rec-
ognized by most scientists and textbooks [14]. Mathematical models have helped
in understanding interactions among hosts and parasites, especially in finding the
conditions for host regulation, and for parasite establishment.

In models for the so-called micro-parasites (bacteria, viruses,. . . ), the latter is
often expressed in terms of the reproductive number R0, the expected number of
infected hosts produced by a single infected host in a completely susceptible host
population [9]: in fact, in most epidemic models, R0 > 1 is a necessary and suffi-
cient condition for the instability of the disease-free equilibrium, and a sufficient
condition for the persistence of pathogens.

A similar concept (see, for instance, [25]) has been introduced in several mod-
els for the so-called macro-parasites (mainly helminths). However, the basic mod-
els for macro-parasites consist of an infinite system of differential equations for
which stability conditions of parasite-free equilibria have not been rigorously estab-
lished so far. On the other hand, the stability conditions have been obtained in
low-dimensional approximate models [1,23] which may give somewhat different
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results according to the approximation [20,26]; the analysis of an infinite-dimen-
sional model has been however performed by Kretzschmar [19] as further discussed
below.

The starting point for modelling macroparasites is the model first presented by
Kostizin [17], in which the main variables are pi(t), the density of hosts carrying
i parasites, i ∈ N.

Parasites in one host may increase from i − 1 to i because of new infections at
rate ϕ(t); may decrease from i + 1 to i because of the death of one parasite: it will
be assumed that each parasite dies (independently of the number of parasites in the
same host) at rate σ .

Hosts may also be born and die: it will always be assumed that newborn hosts
are parasite-free. It may also be assumed that hosts’ fertility is reduced by parasites:
the simplest consistent law is a multiplicative law [10], so that fertility of a host
carrying i parasites is reduced by a factor ξ i with 0 < ξ ≤ 1. As for host mortal-
ity, the simplest assumption is that hosts are subject to natural mortality µ plus an
additional rate α for each parasite harboured.

Under these assumptions, one obtains the following infinite system of differ-
ential equations

{
d
dt
p0(t) = −(µ+ ϕ(t))p0(t)+ σp1(t)+ b

∑+∞
i=0 pi(t)ξ

i

d
dt
pi(t) = −(µ+ ϕ + i(α + σ))pi(t)+ σ(i + 1)pi+1(t)+ ϕpi−1(t), i ≥ 1.

(1)

where it has been assumed that natural birth rate b and death rateµ are independent
of host density.

Kretzschmar [19] has analysed this system under the assumption

ϕ(t) = hP (t)

c +N(t) (2)

where N(t) = ∑∞
i=0 pi(t) is the total density of hosts and P(t) = ∑∞

i=0 ipi(t) is
the total density of adult parasites. This form of ϕ, which will always be employed
in the present paper, can be obtained from a sub-model that includes infection
through free-living larvae [1]: h represents the product of parasite fertility times
the probability of successful establishment of a parasite larva that is picked up by a
host; c is the ratio of free-living larvae mortality over encounter rate between larvae
and hosts.

Kretzschmar studied the system for c = 0 (discussed in Section 6) and c > 0.
In the latter case, she found a sufficient condition (necessary and sufficient when
ξ = 1) for the existence of equilibria with parasites. It is not easy to interpret this
condition biologically. Moreover, the condition cannot be written as a reproduction
number at the parasite-free equilibrium, since no parasite-free equilibria exist; in
fact, in that model, the host population, in absence of parasites, grows (or decreases)
exponentially.

In order to have parasite-free equilibria, it is necessary to introduce density-
dependence in hosts’ fertility and/or mortality; this also improves the biological
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realism of the model. For the sake of simplicity, here we restrict ourselves to assume
density-dependence in fertility, and density-independent mortality. When a generic
function for density-dependence is used, the method of generating function, first
used by Hadeler and Dietz [13] and then by Kretzschmar [18,19], seems not to be
helpful. We therefore chose to use methods based on perturbation of linear semi-
groups. Moreover, we found that including hosts’ age in the model (as in [18]) does
not really introduce big complications, and indeed makes many expressions more
transparent.

Hence, we allow for age-dependent host fertility and mortality and arrive at the
following system of differential equations:



∂
∂t
pi(a, t) + ∂

∂a
pi(a, t) = −(µ(a)+ ϕ(t)+ i(α + σ))pi(a, t)

+σ(i + 1)pi+1(a, t)+ ϕ(t)pi−1(a, t) i ≥ 0

p0(0, t) = ψ(N(t)) ∫ +∞
0 β(a)

∑+∞
i=0 pi(a, t)ξ

i da

pi(0, t) = 0 i > 0

pi(a, 0) = hi(a) i ≥ 0

(3)

with the convention p−1(a, t) ≡ 0. Here pi(a, t) for i ≥ 0 and a in [0,+∞)
denotes the density of hosts of age a harbouring i parasites at time t .

Here again the infection rate ϕ(t) is given by (2), with

N(t) =
∫ +∞

0

+∞∑
i=0

pi(a, t) da and P(t) =
∫ +∞

0

+∞∑
i=1

ipi(a, t) da. (4)

As for demographic parameters, µ(a) is the natural death rate of hosts while
α is the additional death rate for each parasite carried. The fertility rate of hosts
carrying i parasites is given by ψ(N(t))β(a)ξ i , where ψ is a decreasing function
that shapes the density dependence of fertility.

Under standard conditions (see, for instance, [15]), this system will have a
parasite-free equilibrium (PFE) at the hosts’ carrying capacity. The reproduction
number R0 can be defined as the expected number, when hosts are at the PFE, of
successful infecting larvae produced in its life by a newly established adult para-
site. In this paper, we show that this quantity defines a threshold for this model: if
R0 > 1, there exists an equilibrium with a positive number of parasites, and the
PFE is unstable; if R0 < 1, the parasite-free equilibrium is asymptotically stable
for (3) (if it is so for the purely demographic equation), and there are no positive
equilibria.

The organization of the paper is as follows.
In Section 2 we state the exact assumptions on the vital rates. In Section 3 we

study the existence of positive equilibria, and show that this is equivalent toR0 > 1.
In Section 4, we set this model in an abstract framework, stating the well-posed-
ness result obtained in [24]; furthermore, we prove, with the help of a theorem
due to Desch and Schappacher [5], a general linearization principle for equilibrium
stability in this class of equations. In Section 5 we go back to (3), showing that
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the growth rate ω of the linearized, at the PFE, semigroup is negative (hence the
PFE is exponentially asymptotically stable) if R0 < 1; and is positive (hence the
PFE is unstable) if R0 > 1. Finally, in the last section we discuss the biological
interpretation of the results, their connection with the literature, and some possible
extensions.

A reader mainly interested in the biological results may skip the proof of The-
orem 1 in Section 3, and skip Sections 4 and 5 altogether, except for the statements
of Theorems 4 and 5 at the end of Section 5.

2. Preliminary assumptions

In order to perform a qualitative study of system (3) (as well as in [24] to prove
existence and uniqueness of solutions), we take the following assumptions (see for
instance [28]):

(H1) µ is a nonnegative, locally integrable function and there exist values µ−, µ+
such that 0 < µ− ≤ µ(a) ≤ µ+ for a.e. a ∈ [0,+∞)

(H2) β ∈ L∞[0,+∞), β(a) ≥ 0.

Concerning the function ψ describing density-dependence in host fertility, we as-
sume

(H3) ψ ∈ C1([0,+∞)), ψ(0) = 1, ψ ′(s) < 0, lim
s→+∞ψ(s) = 0.

Note that ψ(0) = 1 is simply a normalization, since any constant can be inserted
in the function β.

Another condition is needed to obtain a parasite–free stationary solution of (3).
If p = (p0(a), p1(a), ...) is a stationary solution of (3) corresponding to ϕ = 0,
then pi(a) ≡ 0 for i > 0 and p0(a) = p0(0)π(a) where

π(a) = e−
∫ a

0 µ(s) ds .

Setting

R =
∫ +∞

0
β(a)π(a) da,

it can be easily seen that there is a stationary solution with ϕ = 0 if and only if
there exists some K > 0 such that

ψ(K) = 1

R , (5)

that is, because of (H3), if and only if

(H4) R > 1.

If R ≤ 1, it is not difficult to show that the host population will decrease to 0 (see
for instance [15]) as t goes to ∞.

When (H1)–(H4) hold, the stationary solution of (3) is given by

p̄0(a) = K∫ +∞

0 π(u) du
π(a)

p̄i(a) = 0 i > 0
(6)

and will be called the ‘Parasite Free Equilibrium’, shortly PFE.
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Note that p̄0(a) is not necessarily stable for the purely demographic equation
(the 0-th equation in (3) with pi ≡ 0 for all i = 0). Indeed, it is well known [15,
27] that it will be locally asymptotically stable if and only if

(H5) There are no solutions with Re λ ≥ 0 of

1

R
∫ ∞

0
β(a)π(a)e−λa da + ψ ′(K)KR∫ ∞

0
π(a) da

∫ ∞

0
π(a)e−λa da = 1.

Some sufficient conditions for (H5) have been found: for instance, (H5) holds
for any decreasing functionψ , ifπ(a) is a convex function [15], which is equivalent
to µ′(a) ≤ µ2(a).

3. Existence and uniqueness of positive equilibria

We gave the expression (6) for the equilibrium of (3) without parasites. An inter-
esting question is whether there exist equilibria, i.e. stationary solutions, with a
positive density of hosts and parasites, the so-called endemic equilibria. It is clear
from expression (2) that, at an endemic equilibrium, the infection rate will be a
constant ϕ > 0.

In this Section, we will first show that an equilibrium of (3) is completely deter-
mined once we know the value of ϕ. Then we will find the (scalar) equation (12)
that ϕ must satisfy to correspond to an equilibrium of (3). Finally, we will find the
conditions for existence (and uniqueness) of solutions to (12), hence of endemic
equilibria of (3).

Assume now that ϕ > 0 is the infection rate, and that (pi(a))i∈N is a stationary
solution of (3). Then it solves


p′
i (a) = −(µ(a)+ ϕ + i(α + σ))pi(a)+ σ(i + 1)pi+1(a)+ ϕpi−1(a) i ≥ 0

p0(0) = L = ψ(N̄)
∫ +∞

0
β(a)

+∞∑
i=0

pi(a)ξ
i da

pi(0) = 0 i ≥ 1,

(7)

where

N̄ =
+∞∑
i=0

∫ +∞

0
pi(s) ds P̄ =

+∞∑
i=1

i

∫ +∞

0
pi(s) ds ϕ = hP̄

c + N̄ (8)

are constant.
Therefore, disregarding the implicit boundary condition involving p0(0), it is

known (see [2] or [16]) that the population has a Poisson’s distribution at each a,

pi(a) = n(a) (x(a))
i

i!
e−x(a)
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where n(a) and x(a) are specified below: n(a) represents the total population den-
sity at age a, and x(a) the mean number of parasites carried by a host of age a.
n(a) and x(a) can be found as

x(a) = ϕ

α + σ (1 − e−(α+σ)a) and n(a) = Lπϕ(a),

where, by definition,

πϕ(a) := e−
∫ a

0 µ(u) du−α
∫ a

0 x(u) du (9)

represents the probability for an individual to survive to age a (note that the depen-
dence on ϕ is hidden in x(u), and that π0(a) = π(a)).

In conclusion, once the two constants ϕ > 0 andL > 0 have been specified, the
stationary solution of (3) can be explicitly computed. To determine these constants,
we impose the relations (8) and the boundary condition on p0(0).

First, we compute N̄ and P̄ as

N̄ =
∫ +∞

0
n(a) da =

∫ +∞

0
Lπϕ(a) da = LG(ϕ),

P̄ = L

∫ +∞

0
x(a)πϕ(a) da = Lϕ

α + σ R(ϕ),

having set

G(ϕ) =
∫ +∞

0
πϕ(a) da and R(ϕ) =

∫ +∞

0
(1 − e−(σ+α)a)πϕ(a) da. (10)

Substituting these expressions in (8), one gets the equation

ϕ = hLϕR(ϕ)

(α + σ)(c + LG(ϕ)) ,

whence

L = L(ϕ) = c

hR(ϕ)
α+σ −G(ϕ)

which gives L, the density of newborn, as function of ϕ, for ϕ > 0.
In order to deal with quantities that have biological meaning we require L(ϕ) > 0.

This is true as long as
hR(ϕ)

(α + σ)G(ϕ) > 1. Since, as we will show below,
R(ϕ)

G(ϕ)
is a (continuous) decreasing function in [0,+∞), a necessary condition for the

existence of a solution of (7) is
h

α + σ
R(0)

G(0)
> 1, i.e.

h
∫ +∞

0 (1 − e−(α+σ)a)π(a) da
(α + σ) ∫ +∞

0 π(a) da
> 1. (11)
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Under condition (11) (below we will ask for a stronger one),
hR(ϕ)

(α + σ)G(ϕ) > 1

in [0, ϕmax) where ϕmax is such that
hR(ϕmax)

(α + σ)G(ϕmax) = 1, if such a value exists,

ϕmax = +∞ otherwise.
Using the expression obtained for L(ϕ), the boundary condition of (7)

p0(0) = L = ψ(N̄)
∫ +∞

0
β(a)

+∞∑
i=0

Lπϕ(a)
(x(a))i

i!
e−x(a)ξ i da

becomes, for ϕ ∈ [0, ϕmax),

1 = H(ϕ), (12)

where

H(ϕ) := ψ(L(ϕ)G(ϕ))S(ϕ) = ψ
( c

h
σ+α

R(ϕ)
G(ϕ)

− 1

)
S(ϕ) (13)

with

S(ϕ) :=
∫ +∞

0
β(a)πϕ(a)e

−x(a)(1−ξ) da. (14)

We have then reduced the problem of finding a solution of (7)–(8) to that of
finding a solution ϕ of H(ϕ) = 1.

The main result of this Section is the following.

Theorem 1. There exists a positive equilibrium if and only if

R0 := hK

c +K
R(0)

(α + σ)G(0) = hK

c +K

∫ +∞
0 (1 − e−(σ+α)a)π(a) da
(α + σ) ∫ +∞

0 π(a) da
> 1. (15)

There exists at most one positive equilibrium.

Since positive equilibria correspond to solution of (12), the thesis will be proved if
we show that H is a decreasing function, and that H(0) > 1 is equivalent to (15).

This will be proved through several lemmas.

Lemma 1. If g(a) = a − 1 − e−(σ+α)a

σ + α , h(a) = 1 − e−(σ+α)a and πϕ(a) is as in

(9), then

+∞∫
0

πϕ(a) da ·
+∞∫
0

πϕ(a)g(a)h(a) da >

+∞∫
0

πϕ(a)g(a) da ·
+∞∫
0

πϕ(a)h(a) da.
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Proof. Let u(a) = πϕ(a)h(a) and v(a) = πϕ(a). We have to prove that

+∞∫
0

v(a) da ·
+∞∫
0

u(a)g(a) da >

+∞∫
0

v(a)g(a) da ·
+∞∫
0

u(a) da. (16)

By a lemma in [12], (16) holds if g and
u

v
are increasing. This is obvious from the

definitions of g and h, since
u(a)

v(a)
= h(a). ��

Lemma 2. The function H defined in (13) is strictly decreasing.

Proof. From (13) we have

H ′(ϕ) = S′(ϕ)ψ
( c

h
σ+α

(
R(ϕ)
G(ϕ)

− σ+α
h

))
− S(ϕ)ψ ′

( c

h
σ+α

(
R(ϕ)
G(ϕ)

− σ+α
h

))

· ch

α + σ
1(

h
α+σ

R(ϕ)
G(ϕ)

− 1
)2

d

dϕ

(R(ϕ)
G(ϕ)

)
. (17)

We need to compute the derivatives of the functions G, R and S. To this aim,
we will use

∂

∂ϕ
πϕ(a) = −πϕ(a) α

σ + α (a − 1 − e−(σ+α)a

σ + α ) = − α

σ + απϕ(a)g(a) (18)

and pass the derivatives inside the integrals because

| ∂
∂ϕ
πϕ(a)| ≤ Mae−

∫ a
0 µ(u) du for someM > 0,

for all ϕ > 0 and the RHS is a function integrable on (0,+∞). In particular,
substituting (18) in (10), and using Lemma 1, we obtain

R′(ϕ)G(ϕ)− R(ϕ)G′(ϕ) = − α

σ + α
∫ +∞

0
h(a)πϕ(a)g(a) da ·

∫ +∞

0
πϕ(a) da

+ α

σ + α
∫ +∞

0
h(a)πϕ(a) da ·

∫ +∞

0
πϕ(a)g(a) da

< 0.

Therefore

d

dϕ

(R(ϕ)
G(ϕ)

)
= R′(ϕ)G(ϕ)− R(ϕ)G′(ϕ)

G(ϕ)2
< 0.

Moreover

S′(ϕ) = − α

σ + α
∫ +∞

0
β(a)πϕ(a)g(a)e

−x(a)(1−ξ) da

− (1 − ξ)
σ + α

∫ +∞

0
β(a)πϕ(a)h(a)e

−x(a)(1−ξ) da

< 0.
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Substituting these computations in (17) and remembering thatψ ′(·) < 0 by assump-
tion (H3), we obtain H ′(·) < 0. ��
Lemma 3. H(0) > 1 if and only if R0 > 1.

Proof. We have

H(0) = ψ
( c

hR(0)
(α+σ)G(0) − 1

) ∫ +∞

0
β(a)π(a) da = ψ

( c

hR(0)
(α+σ)G(0) − 1

)
R.

Recalling that ψ is a strictly decreasing function and ψ(K)R = 1, we see that
H(0) > 1 is equivalent to

c

hR(0)
(α+σ)G(0) − 1

< K

i.e., after some algebra, equivalent to (15). ��
Proof (of Theorem 1). Lemma 2 immediately yields uniqueness of solutions of
(12).

Note moreover that (15) implies (11); hence, if R0 > 1, H is defined and
positive on the non-empty interval [0, ϕmax).

Finally, we see that lim
ϕ→ϕ−

max

H(ϕ) = 0.

In fact, if ϕmax < +∞, then

lim
ϕ→ϕmax

H(ϕ) = lim
x→+∞ψ(x)S(ϕmax) = 0,

because of assumption (H3). On the other hand, if ϕmax = +∞ we have
lim

ϕ→+∞S(ϕ) = 0 because of Lebesgue’s convergence theorem.

Therefore it follows that there exists one (and only one) ϕ > 0 such that
H(ϕ) = 1 if and only if H(0) > 1. From Lemma 3 this is equivalent to R0 > 1.

��

4. Abstract setting and linearization principle

In order to study the stability of the PFE we follow the abstract approach already
described in [24], using semigroup theory. To perform this, we transform system
(3) into the abstract Cauchy problem

p
′(t) = A(p(t)+H(p(t)))+ F(p(t))
p(0) = p0

(19)

where A is the generator of a C0-semigroup on a certain Banach space X, while
F : X → X and H : X → FA are locally Lipschitz operators.

We have denoted by FA the Favard class of A (see [3] for details), i.e.

FA = {p ∈ X : lim sup
t→0+

1

t
||etAp − p|| < +∞}
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which is a Banach space with the norm

|p|FA := ||p|| + lim sup
t→0+

1

t
||etAp − p||.

We recall (Theorem 3.4.3 in [3]) that FA is equal to the interpolation space
(X,D(A))1,∞;K .

The use of ‘multiplicative perturbations’ of C0-semigroups as an abstract set-
ting for the equations of age-dependent populations has been initiated by Desch
and Schappacher [7]. The following general theorem is presented in [24], but is
essentially already contained in [8].

Theorem 2. Assume

(H1) A : D(A) ⊂ X → X is the generator of a C0-semigroup etA on a Banach
space X

(H2) H : X → FA and F : X → X are locally Lipschitz continuous, i. e. for all
R > 0 there exist LR,KR > 0 such that

|H(p)−H(q)|FA ≤ LR||p − q||, ||F(p)− F(q)|| ≤ KR||p − q|| (20)

for all p, q ∈ X such that ||p||, ||q|| ≤ R
(more generally, H and F could be defined only on an open set of X).

Then

a) for each p0 ∈ X there exists a unique (local) mild solution of (19) i.e. a contin-
uous function t → p(t) satisfying the integral equation

p(t) = etAp0 + A
∫ t

0
e(t−s)AH(p(s)) ds +

∫ t

0
e(t−s)AF (p(s)) ds; (21)

b) ifH and F are continuously differentiable and (p0 +H(p0)) ∈ D(A) then p(t)
is a classical solution of (19), i.e.p(t)+H(p(t)) ∈ D(A) for each t ∈ [0, tmax),
p(t) is differentiable and satisfies the equation (19) for each 0 ≤ t < tmax .

c) The mild solutions depend continuously on the initial datum and give rise to a
nonlinear semigroup T (t).

A crucial property (see [7]) for the proof of this theorem, that we will also use
in the sequel, is the following: if f ∈ C([0, T ];FA) then∫ t

0
e(t−s)Af (s) ds ∈ D(A)

and

||A
∫ t

0
e(t−s)Af (s) ds|| ≤ M

∫ t

0
eω(t−s)|f (s)|FA ds (22)

for all 0 ≤ t ≤ T , whereM ≥ 1 and ω ∈ R are such that ||etA|| ≤ Meωt .
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To use this theorem for system (3), a natural choice for X is

X := {
p = (pi)i∈N : pi ∈ L1(0,+∞)∀i ≥ 0,

+∞∑
i=1

i

∫ +∞

0
|pi(a)|da <∞}

endowed with the norm

||p|| :=
∫ +∞

0
|p0(a)| da +

+∞∑
i=1

i

∫ +∞

0
|pi(a)| da.

As for the operators A, F and H , we let A be the closure of the (closable) linear
operator A on X defined by

D(A) = {p ∈ X : pi ∈ W 1,1(0,+∞), pi(0) = 0 ∀i ≥ 0, and

there exists N ∈ N such that pi ≡ 0 for all i > N}
(Ap)i(a) := −p′

i (a)− (µ(a)+ i(α + σ))pi(a)+ (i + 1)σpi+1(a) for i ≥ 0
(23)

and F is the nonlinear operator given by

(F (p))i =
h

+∞∑
i=1

i

∫ +∞

0
pi(a) da

c +
+∞∑
i=0

∫ +∞

0
pi(a) da

(pi−1 − pi), i ≥ 0 (24)

having set p−1 ≡ 0. F is defined on E where

E := {p ∈ X : c +
+∞∑
i=0

∫ +∞

0
pi(s) ds = 0}.

Finally H , the ‘multiplicative perturbation’, is:

(Hp)0(a) = −ψ
( ∫ +∞

0

+∞∑
i=0

pi(s) ds
)( ∫ +∞

0
β(s)

+∞∑
i=0

pi(s)ξ
i ds

)
π(a),

(Hp)i ≡ 0 for i ≥ 1

(25)

for p ∈ X.
In this approach, the boundary condition (the second equation of (3)) is “moved”

to the RHS of (19). Indeed (p +Hp) ∈ D(A) if and only if the components of p
are inW 1,1(0,+∞) and p satisfies the conditions

p0(0) = ψ

( +∞∫
0

+∞∑
i=0

pi(s) ds

)( +∞∫
0

β(s)

+∞∑
i=0

pi(s)ξ
i ds

)
,

pi(0) = 0 for i ≥ 1,

which are exactly the boundary conditions in (3).
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Existence and uniqueness of classical solutions of (19) have been proved in
[24] by showing that, if conditions (H1)-(H3) hold, these operators satisfy condi-
tions (H1)–(H2) and H , F are continuously differentiable. Moreover, if p0 ≥ 0,
the solutions are positive and global, i.e. the nonlinear semigroup T (t) yielded by
Theorem 2-c) is defined for all t ≥ 0.

We are now interested in analysing the stability of the equilibria of equation
(19). Indeed, since solutions of equations of the type appearing in (19) are generally
to be intended in the mild sense (21), we give the following definition.

Definition 1. A point p∗ ∈ X is a (mild) equilibrium of the equation (21) if p∗
solves

p∗ = etAp∗ + A
∫ t

0
esAH(p∗) ds +

∫ t

0
esAF (p∗) ds (26)

for each t ≥ 0.

Lemma 4. p∗ is a (mild) equilibrium if and only if p∗ + H(p∗) ∈ D(A) and
A(p∗ +H(p∗))+ F(p∗) = 0.

Proof. The latter definition clearly implies the former.
Conversely, let p∗ satisfy (26). From

p∗ = etAp∗ + etAH(p∗)−H(p∗)+
∫ t

0
esAF (p∗) ds,

or, equivalently,

(etA − I )(p∗ +H(p∗))+
∫ t

0
esAF (p∗) ds = 0,

we obtain

etA − I
t

(p∗ +H(p∗)) = −1

t

∫ t

0
eAsF (p∗) ds.

The right-hand side converges to −F(p∗) as t → 0+ and thus the same is true for
the left hand side. This means that p∗ +H(p∗) ∈ D(A) and thatA(p∗ +H(p∗))+
F(p∗) = 0. ��

Let now p∗ denote an equilibrium of (19). We prove here a linearization the-
orem for the asymptotic stability or instability of the equilibrium p∗ (see [5] for
the definition of stability and instability of equilibria of nonlinear semigroups). A
linearization theorem is well known (see, for instance, [27]) for semilinear equa-
tions of the type u′ = Au+F(u). More generally, in [5] a linearization theorem is
proved for nonlinear semigroups; here, we show that we can apply this theorem to
our case, simply linearizing H and F .

Assume that H : X −→ FA and F : E ⊂ X −→ X are C1 and let H ′(p∗)
and F ′(p∗) be the Fréchet derivatives of H and F at p∗. For p ∈ X such that
p +H ′(p∗)p ∈ D(A) define the linear operator

Bp∗p := A(I +H ′(p∗))p + F ′(p∗)p. (27)
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We will show that the stability of p∗ is determined by the type of the semigroup
generated by Bp∗ . To state the result precisely, recall [11] that, ifA is the generator
of a C0-semigroup, one can define the quantity

ω0(A) := lim
t→+∞

log ||etA||
t

which is called the type or growth bound of etA.
If ω0(A) < 0, there exist γ > 0 and M ≥ 1 such that ||etAu0|| ≤ Me−γ t ||u0||

∀t ≥ 0 and u0 ∈ X.
The main result of this section (Corollary 1) is that, if ω0(Bp∗) < 0, p∗ is

asymptotically stable; if ω0(Bp∗) > 0, p∗ is unstable.
First, we show that Bp∗ generates a C0-semigroup which is the Fréchet deriv-

ative of the nonlinear semigroup T (t).

Proposition 1. The linear operator Bp∗ defined in (27) generates a C0-semigroup.

Proof. Since H ′(p∗) : X → FA is linear and continuous, the results in [4] about
multiplicative perturbations can be applied and hence A(I + H ′(p∗)) is the gen-
erator of a C0−semigroup. Moreover, since the additive perturbation F ′(p∗) is
bounded and linear,Bp∗ is the generator of aC0−semigroup etBp∗ (see, for instance,
[11] Ch. III). ��
Proposition 2. The operator Bp∗ generates the Fréchet-derivative at p∗ of the
nonlinear semigroup T (t), i.e. etBp∗ is such that

lim
q→p∗

||T (t)q − p∗ − etBp∗ (q − p∗)||
||q − p∗|| = 0

and the convergence is uniform for t ∈ [0, T ], T > 0.

Proof. Since p∗ is an equilibrium then p(t, p∗) := T (t)p∗ = p∗ for all t ≥ 0. For
q ∈ X, set

w0
q := q − p∗, wq(t) = p(t, q)− p∗, and vq(t) = etBp∗w0

q .

We have to prove that

lim
||w0
q ||→0

||wq(t)− vq(t)||
||w0
q ||

= 0,

uniformly for t ∈ [0, T ], T > 0.
Using (26) one sees that

||wq(t)− vq(t)|| = ||A
∫ t

0
e(t−s)A[H(p∗ + wq(s))−H(p∗)−H ′(p∗)wq(s)] ds

+A
∫ t

0
e(t−s)AH ′(p∗)(wq(s)− vq(s)) ds

+
∫ t

0
e(t−s)A[F(p∗ + wq(s))− F(p∗)− F ′(p∗)wq(s)] ds

+
∫ t

0
e(t−s)AF ′(p∗)(wq(s)− vq(s)) ds||
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and hence by (22)

||wq(t)− vq(t)||≤M
(∫ t

0
eω(t−s)|H(p∗ + wq(s))−H(p∗)−H ′(p∗)wq(s)|FAds

+
∫ t

0
eω(t−s)|H ′(p∗))|L(X,FA)||wq(s)− vq(s)|| ds

+
∫ t

0
eω(t−s)||F(p∗ + wq(s))− F(p∗)− F ′(p∗)wq(s)|| ds

+
∫ t

0
eω(t−s)||F ′(p∗))||L(X)||wq(s)− vq(s)|| ds

)
.

Now, for arbitrary η > 0

|H(p∗ + wq(s))−H(p∗)−H ′(p∗)wq(s)|FA ≤ η||wq(s)||,
provided that ||wq(s)|| ≤ ε(η). Since the solutions of (19) depend continuously on
the initial datum, it is clear that ||wq(s)|| ≤ ε(η) for 0 ≤ s ≤ T , T > 0, if ||w0

q || is
small enough.

By the same argument,

||F(p∗ + wq(s))− F(p∗)− F ′(p∗)wq(s)|| ≤ η||wq(s)||
for 0 ≤ s ≤ T if ||wq(s)|| ≤ δ(η).

Moreover, it was shown in the proof of Theorem 2.2 in [24] that there exists
L > 0 such that

||wq(s)|| ≤ MeLT ||w0
q ||, for 0 ≤ s ≤ T .

Thus, if ||w0
q || is small enough, we have

||wq(t)− vq(t)|| ≤ Mη
∫ t

0
eω(t−s)||wq(s)|| ds +M|H ′(p∗)|

·
∫ t

0
eω(t−s)||wq(s)− vq(s)|| ds +Mη

∫ t

0
eω(t−s)||wq(s)|| ds

+M||F ′(p∗)||
∫ t

0
eω(t−s)||wq(s)− vq(s)|| ds

≤ 2M2η

|ω| ||w0
q |||eωT − 1|eLT

+M(|H ′(p∗)| + ||F ′(p∗)||)e|ω|T
∫ t

0
||wq(s)− vq(s)|| ds.

Finally, by Gronwall Lemma it follows

||wq(t)− vq(t)|| ≤ 2M2η

|ω| ||w0
q ||eLT |eωT − 1|eMe|ω|T T (|H ′(p∗)|+||F ′(p∗)||).

Since η can be taken arbitrary, the statement is proved. ��



Thresholds for macroparasite infections 15

Applying the results in [5] (slightly modified for the instability clause), we then
obtain the following

Corollary 1. If ω0(Bp∗) < 0, then p∗ is exponentially asymptotically stable for
(19). If ω0(Bp∗) > 0, X = X1 ⊕X2 with X1 finite dimensional, Xi invariant with
respect to etBp∗ for i = 1, 2, and

min{Re λ : λ ∈ σ(Bp∗ |X1)} > max
{
ω0(Bp∗ |X2), 0

}
then p∗ is unstable for (19).

5. Stability conditions

In this section we will apply the results of the linearization principle proved in the
previous Section to the case where A, F and H are given by (23), (24) and (25),
and the equilibrium p∗ is the PFE.

In order to compute ω0(Bp∗), we will use repeatedly the following general the-
orem. In essence it says that for a block triangular operator, one needs to compute
only the growth rates of the diagonal blocks. This would be trivial without the
multiplicative perturbation; in this case we have to add assumption (28).

Theorem 3. Let A0 and B1 be the generators of C0-semigroups on the Banach
spaces Y0 and Y1 respectively. Let Hi ∈ L(Yi, FA0) for i = 0, 1 and B10 ∈
L(Y1, Y0). Then

(i) the operator B defined by

B


 q0

q1


 =


A0(q0 +H0q0 +H1q1)+ B10q1

B1q1




is the generator of a C0-semigroup on Y = Y0 ⊕ Y1;
(ii) if, letting I0 be the identity in Y0,

(I0 +H0) is invertible on Y0, (28)

then

ω0(B1) < 0 and ω0(A0(I0 +H0)) < 0 ⇐⇒ ω0(B) < 0.

Before proving the theorem we need a proposition and a lemma.

Proposition 3. Let A generate a C0-semigroup on X, let H : X −→ FA be a
bounded linear operator and let I +H be invertible on X. Then

a) FA = FA(I+H)
b) I + H is also a homeomorphism from FA onto FA with respect to the Favard

class norm.
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Proof. a) Let S(t) be the semigroup generated by A and T (t) be the semigroup
generated by A(I + H). The main theorem in [6] states that for each x ∈ X
we have ||S(t)x− T (t)x|| = O(t) as t → 0+. From this it follows immediately
that ||S(t)x − x|| = O(t) if and only if ||T (t)x − x|| = O(t).

b) Since H(X) ⊂ FA, it is evident that I +H maps FA into FA. Conversely, the
same argument yields that (I + H)−1 = I − H(I + H)−1 maps FA into FA.
The Closed Graph Theorem implies that I +H is also a homeomorphism with
respect to the Favard class norm.

Lemma 5. Let A be the generator of a C0-semigroup on the Banach space X and
suppose that H ∈ L(X, FA), (I + H) is invertible on X, f ∈ C([0, T ], FA),
g ∈ C([0, T ], X). Then the solution of

v(t) = etAv0 + A
∫ t

0
e(t−s)AH(v(s)) ds

+ A
∫ t

0
e(t−s)Af (s) ds +

∫ t

0
e(t−s)Ag(s) ds

(29)

is given by

v(t) = etA(I+H)v0 + A(I +H)
∫ t

0
e(t−s)A(I+H)(I +H)−1f (s) ds

+
∫ t

0
e(t−s)A(I+H)g(s) ds.

(30)

Proof. Notice first that, thanks to Proposition 3 and (22), the RHS in (30) is well
defined. Since, by Theorem 2, (29) has a unique solution, we have only to show
that v(t) defined in (30) solves (29). To begin, let f ∈ C1([0, T ], FA). Using in
(30) the definition [7] of etA(I+H) we get

v(t) = etAv0 + A
∫ t

0
e(t−s)AHesA(I+H)v0 ds

+ A(I+H)
∫ t

0
e(t−s)A(I+H)(I +H)−1f (s) ds+

∫ t

0
e(t−s)A(I+H)g(s) ds.

and then, substituting esA(I+H)v0 with v(s) minus the rest of the RHS of (30), we
get

v(t) = etAv0 + A
∫ t

0
e(t−s)AH

[
v(s)− A(I +H)

∫ s

0
e(s−u)A(I+H)

· (I +H)−1f (u) du−
∫ s

0
e(s−u)A(I+H)g(u) du

]
ds

+ A(I+H)
∫ t

0
e(t−s)A(I+H)(I +H)−1f (s) ds+

∫ t

0
e(t−s)A(I+H)g(s) ds

= v1(t)+ v2(t)

where, performing also some integration by parts,
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v1(t) = etAv0 + A
∫ t

0
e(t−s)AH(v(s)) ds − A

∫ t

0
e(t−s)AH

[
esA(I+H)(I +H)−1

· f (0)− (I +H)−1f (s)+
∫ s

0
e(s−u)A(I+H)(I +H)−1f ′(u) du

]
ds,

v2(t) = −A
∫ t

0
e(t−s)AH

∫ s

0
e(s−u)A(I+H)g(u) du ds

+ etA(I+H)(I +H)−1f (0)− (I +H)−1f (t)

+
∫ t

0
e(t−s)A(I+H)(I +H)−1f ′(s) ds +

∫ t

0
e(t−s)A(I+H)g(s) ds.

Now, using the definition of etA(I+H) in v2(t), we get

v2(t) =etA(I +H)−1f (0)+ A
∫ t

0
e(t−s)AHesA(I+H)(I +H)−1f (0) ds

− (I +H)−1f (t)+
∫ t

0
e(t−s)A(I +H)−1f ′(s) ds

+
∫ t

0
A

∫ t−s

0
e(t−s−u)AHeuA(I+H) du (I +H)−1f ′(s) ds

− A
∫ t

0
e(t−s)AH

∫ s

0
e(s−u)A(I+H)g(u) du ds +

∫ t

0
e(t−s)Ag(s) ds

+
∫ t

0
A

∫ t−s

0
e(t−s−u)AHeuA(I+H)g(s) du ds.

Cancelling the terms in v1(t) and v2(t) with opposite signs, we get

v(t) = etAv0 + A
∫ t

0
e(t−s)AH(v(s)) ds + A

∫ t

0
e(t−s)AH(I +H)−1f (s) ds

+ etA(I +H)−1f (0)− (I +H)−1f (t)

+
∫ t

0
e(t−s)A(I +H)−1f ′(s) ds +

∫ t

0
e(t−s)Ag(s) ds,

which becomes, via an integration by parts,

v(t) = etAv0 + A
t∫

0

e(t−s)AH(v(s)) ds + A
t∫

0

e(t−s)AH(I +H)−1f (s) ds

+ A
t∫

0

e(t−s)A(I +H)−1f (s) ds +
t∫

0

e(t−s)Ag(s) ds

= etAv0 + A
∫ t

0
e(t−s)AH(v(s)) ds

+ A
∫ t

0
e(t−s)Af (s) ds +

∫ t

0
e(t−s)Ag(s) ds,

which is the thesis.
Using a density argument, the same can be proved when f ∈ C([0, T ], FA).

��
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Proof (of Theorem 3). (i) Consider the operator

B̃ =

A0 0

0 B1


 .

It clearly generates a C0-semigroup on Y = Y0 ⊕ Y1 while

H


 q0

q1


 =


H0q0 +H1q1

0




defines an operator H ∈ L(X, FB̃). Now a straightforward application of the per-
turbation theorem by Desch and Schappacher [4] combined with the classical result
about bounded perturbations prove the first statement.

About (ii), if ω0(B1) ≥ 0 or ω0(A0(I0 +H0)) ≥ 0, it is clear that ω0(B) ≥ 0:
it suffices to apply etB to (0, q1)

T or (q0, 0)T .
Suppose now that ω0(B1) < 0 and ω0(A0(I0 + H0)) < 0. Then there exist

constantsM,η > 0 such that

||etB1 || ≤ Me−ηt , ||etA0(I0+H0)|| ≤ Me−ηt .
Set 

 q0(t)

q1(t)


 = etB


q0

0

q0
1


 .

We have q1(t) = etB1q0
1 while q0(t) solves

q0(t) = etA0q0
0 + A0

∫ t

0
e(t−s)A0H0(q0(s)) ds

+ A0

∫ t

0
e(t−s)A0H1(q1(s)) ds +

∫ t

0
e(t−s)A0B10q1(s) ds.

Apply the previous lemma with f (t) = H1q1(t) and g(t) = B10q1(t). Hence

q0(t) = etA0(I0+H0)q0 +
∫ t

0
e(t−s)A0(I0+H0)B10(q1(s)) ds

+ A0(I0 +H0)

∫ t

0
e(t−s)A0(I0+H0)(I0 +H0)

−1H1(q1(s)) ds.

From ||q1(t)|| ≤ Me−ηt ||q0
1 || it follows that

||q0(t)|| ≤Me−ηt ||q0
0 || +M2

∫ t

0
e−η(t−s)||B10||L(X1,X0)e

−ηs ||q0
1 || ds

+M2
∫ t

0
e−η(t−s)||(I0 +H0)

−1||L(FA0 ,FA0(I0+H0))
||H1||e−ηs ||q0

1 || ds
≤ e−ηt

(
M||q0

0 || +M2(||(I0 +H0)
−1|| ||H1|| + ||B10||)t ||q1

1 ||
)
.

Thus the second statement is proved. ��
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We are now going to show that Theorem 3 can be applied toB = Bp̄. IfA,F,H
are the operators defined in (23), (24), (25) and p∗ = p̄, that is the PFE, we have,
recalling (5) and (6),

[H ′(p̄)u]0(a) = −
( ψ ′(K)KR∫ +∞

0 π(s) ds

+∞∑
i=0

∫ +∞

0
ui(s) ds

+ 1

R
∫ +∞

0
β(s)

+∞∑
i=0

ui(s)ξ
i ds

)
π(a),

[H ′(p̄)u]i (a) = 0, if i > 0

[F ′(p̄)u]0(a) = −[F ′(p̄)u]1(a) = − hK

c +K
π(a)∫ +∞

0 π(s) ds

+∞∑
i=0

i

∫ +∞

0
ui(s) ds,

[F ′(p̄)u]i (a) = 0, if i > 1.

Set

X = X0 ⊕X1, X1 = X1 ⊕X2,

where

X0 = X1 = L1(0,+∞),

X2 =
{
q̄2 = (qi)i≥2 : qi ∈ L1(0,+∞),

+∞∑
i=2

∫ +∞

0
i|qi(a)| da <∞

}

and therefore

X1 = {
q̄1 = (qi)i≥1 : qi ∈ L1(0,+∞),

+∞∑
i=1

∫ +∞

0
i|qi(a)| da <∞}

.

The operator B can be represented as

B


 q0

q̄1


 =


A0(q0 +H0q0 +H1q̄1)+ B10q̄1

B1q̄1


 , (31)

where

A0 : D(A0) = {
q0 ∈ X0 : q0 ∈ W 1,1(0,+∞), q0(0) = 0

} −→ X0

(A0q0)(a) = −q ′
0(a)− µ(a)q0(a),

H0 : X0 −→ FA0 , H1 : X1 −→ FA0 , B10 : X1 −→ X0
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(H0q0)(a) = −
( ψ ′(K)KR∫ +∞

0 π(s) ds

∫ +∞

0
q0(s) ds + 1

R
∫ +∞

0
β(s)q0(s) ds

)
π(a),

(H1q̄1)(a) = −
( ψ ′(K)KR∫ +∞

0 π(s) ds

+∞∑
i=1

∫ +∞

0
qi(s) ds

+ 1

R
∫ +∞

0
β(s)

+∞∑
i=1

qi(s)ξ
i ds

)
π(a),

(B10q̄1)(a) = −h
∑+∞
i=1

∫ +∞
0 iqi(s) ds

c +K p̄0(a)+ σq1(a);

B1 is the closure of

B1 : D(B1) −→ X1

(B1q̄1)1(a) = −q ′
1(a)− (µ(a)+ σ + α)q1(a)

+ h

c +K
( +∞∑
i=1

∫ +∞

0
iqi(s) ds

)
p̄0(a)+ 2σq2(a)

(B1q̄1)i(a) = −q ′
i (a)− (µ(a)+ σ + α)qi(a)+ (i + 1)σqi+1(a) for i > 1

with

D(B1) =
{
q̄1 ∈ X1 : qi ∈ W 1,1(0,+∞), qi(0) = 0 ∀i ≥ 1, and

there exists N ∈ N such that qi ≡ 0 for all i > N
}
.

(32)

One can immediately verify that H0 and H1 take values in FA0 and that B10 is a
bounded operator.

We also note that B1 can be written as

B1


 q1

q̄2


 =


B11q1 + B21q̄2

B2q̄2


 ,

where

(B11q1)(a) := −q ′
1(a)− (µ(a)+ σ + α)q1(a)+ h

c +K p̄0(a)

∫ +∞

0
q1(s) ds

(33)

with domain

D(B11) = {q1 ∈ W 1,1(0,+∞) : q1(0) = 0},

(B2q̄2)i(a) = −q ′
i (a)− (µ(a)+ i(α + σ))qi(a)+ σ(i + 1)qi+1(a), (34)

with domain

D(B2) ={
q̄2 = (qi)i≥2 : qi ∈ W 1,1(0,+∞), qi(0) = 0 for each i ≥ 2

and there exists N such that qi ≡ 0 for all i > N
}
,
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and

(B21q̄2)(a) =
h

+∞∑
i=2

i

∫ +∞

0
qi(s) ds

c +K p̄0(a)+ 2σq2(a).

Proposition 4. The closure of B1 generates a C0-semigroup on X1.

Proof. The closure of the operator B11 ⊕ B2 generates a C0-semigroup on X1 (as
for B2, see the proof given for the operator A in [24]). Since B21 gives rise to a
bounded perturbation, the classical result on bounded perturbations can be applied
and the proof is achieved. ��

To apply Theorem 3 to our case we have to prove that the operators defined
above satisfy the assumption (28). Indeed, we have:

Proposition 5. I0 +H0 has a bounded inverse on X0.

Proof. Since H0 has finite rank, it is compact and −1 is in the resolvent set of
H0 if and only if it is not in the point spectrum. This is easy to check. Suppose
H0q0 = −q0. From the form ofH0 we infer that q0 = cπ for a suitable constant c.
Without loss of generality we may assume that q0 = π and obtain

π(a) = −(H0π)(a)

=
[
ψ ′(K)

RK∫ +∞
0 π(a) da

∫ +∞

0
π(s) ds + 1

R
∫ +∞

0
β(s)π(s) ds

]
π(a).

Simplification and cancelling yields

1 = ψ ′(K)RK + 1

in contradiction to ψ ′(s) < 0. ��
Now, the main result on the growth rate of B is an easy consequence of the

previous theorems and propositions.

Proposition 6. The operator B = Bp̄, defined in (31), satisfies:

ω0(B) < 0 ⇐⇒ ω0(B11) < 0.

Proof. Theorem 3 can be applied to B taking Y0 = X0 and Y1 = X1.
Moreover, we have ω0(A0(I0 +H0)) < 0. To prove this, we recall some facts

(see [27] for details). If A is a generator of a C0-semigroup T (t) and

ω1(A) := lim
t→+∞ t

−1 log(α[T (t)]), (35)

where α is the measure of noncompactness, then

ω0(A) = max{ω1(A), sup
λ∈σ(A)

Re(λ)}.
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Now,A0(I0 +H0) is a linear operator of age-dependent population, widely studied
in [27]. Since the required hypotheses on the fertility and death rates are satisfied
(assumption (H1) corresponds to (4.68) of [27]), Theorem 4.6 of [27] can be applied
to the operator A0(I0 +H0) ensuring that ω1(A0(I0 +H0) ≤ −µ−. Hence,

ω0(A0(I0 +H0)) < 0 ⇐⇒ sup
λ∈σ(A0(I0+H0))

Re(λ) < 0

where the latter is indeed a maximum.
If λ ∈ σ(A0(I0 + H0)), with Reλ > −µ−, then, by Theorems 4.7 and 4.6

of [27], λ ∈ σP (A0(I0 + H0)), that is λ is an eigenvalue and, because of (H5),
Reλ < 0 (in fact, the equation appearing in (H5) is precisely the characteristic
equation of A0(I0 +H0)).

From Theorem 3 it follows that ω0(B) < 0 if and only if ω0(B1) < 0. Further-
more, we can apply the same theorem to B1, setting H0 = 0, H1 = 0, A0 = B11,
B10 = B21 and B1 = B2. Now, it is easy to show, repeating exactly the proof given
for A in [24], that ω0(B2) < 0. In this way, we obtain that

ω0(B1) < 0 ⇐⇒ ω0(B11) < 0

and we have the thesis. ��
In the previous Proposition, we showed that the negativity of ω0(B) is equiva-

lent to the negativity of ω0(B11), a much simpler operator. In the next Proposition,
we present an explicit criterion for the negativity of ω0(B11).

Proposition 7. It holds:

ω0(B11) < 0 ⇐⇒ R0 := hK

c +K

∫ +∞
0 e−(σ+α)u ∫ +∞

0 π(s + u) ds du∫ +∞
0 π(s) ds

< 1

Proof. Note that we can write

B11 = S + T ,
where

(Sq)(a) := −q ′(a)− (µ(a)+ σ + α)q(a)
with D(S) = D(B11) and

(T q)(a) = h

c +K p̄0(a)

∫ +∞

0
q(s) ds.

T is a compact operator in X1, while S is again an operator of age-dependent pop-
ulation. From Theorem 4.6 of [27] we have ω1(S) ≤ −(µ− + α + σ). Moreover,
since T is compact, we have (Proposition 4.14 of [27])

ω1(S + T ) = ω1(S).
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Summing up, we have obtained

ω0(B11) < 0 ⇐⇒ sup
λ∈σ(B11)

Re(λ) < 0. (36)

First of all, let us look for eigenvalues of B11. Let λ ∈ C and look for q ∈ D(B11),
q = 0, such that

(B11 − λ)q = 0.

Solving this explicitly we obtain

G(λ) = 1

where

G(λ) := h

c +K
∫ +∞

0

∫ a

0
p̄0(s)e

− ∫ a
s µ(τ) dτ e−(α+σ+λ)(a−s) ds da

If G(λ) = 1, Re(λ) > −(µ− + α + σ), and p ∈ X1, we can obtain q = (B11 −
λ)−1(p) as

q(a) =
∫ a

0

[
hM

c +K p̄0(s)− p(s)
]
π(a)

π(s)
e−(σ+α+λ)(a−s) ds (37)

with

M = −
∫ +∞

0

∫ a
0 p(s)

π(a)
π(s)

e−(α+σ+λ)(a−s) ds da
1 −G(λ) .

Hence, the spectrum of B11 in {Re(λ) > −(µ− +α+ σ)} reduces to the solutions
of

G(λ) = 1. (38)

SinceG(λ) is the Laplace transform of a nonnegative function, the following facts
can be easily obtained using the arguments in the proof of Theorem 1.5.1 of [15]:

- there exists at most one real root λ0 > −(µ− + α + σ) of (38);
- if λ0 exists, all the other roots λ satisfy Re λ < λ0; if there is no real root, there

are no complex roots in {Re λ > −(α + σ + µ−)};
- in any strip {a ≤ Re λ ≤ b} there is at most a finite number of roots;
- if R0 = G(0) > [=]1, then λ0 exists and λ0 > [=]0; on the other hand, if
R0 < 1, if there is a real root λ0, it satisfies λ0 < 0.

We then obtain sup
λ∈σ(B11)

Re(λ) < 0 if and only if R0 < 1, which, thanks to (36), is

the thesis. ��
Theorem 4. If R0 < 1, the Parasite Free Equilibrium is exponentially asymptoti-
cally stable.

Proof. It follows immediately from Propositions 6 and 7 and Corollary 1. ��
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The final result is:

Theorem 5. If R0 > 1, the Parasite Free Equilibrium is unstable.

Proof. Again, it is sufficient to apply Corollary 1. Indeed, let X = Z1 ⊕ Z2 be
the spectral decomposition (see, for instance, Proposition 4.8 in [27]) relative to
σ(B) = {λ0} ∪ {λ0}C . Note that, since G′(λ0) < 0, one can immediately see
from (37) that λ0 is a first-order pole of (B − λI)−1, hence Z1 is one-dimensional.
Moreover, ω0(B|Z2) < λ0, as required and we can apply Corollary 1. ��

6. Discussion

We have found in the previous sections that R0 > 1 is the threshold condition for
this model: when R0 > 1 the parasite–free equilibrium is unstable and there exists
a (unique) positive equlibrium. When R0 < 1 there are no positive equilibria and,
if the parasite–free equilibrium is asymptotically stable for the purely demographic
equation (assumption (H5)), then it is stable also for the complete system.

It is then worth trying to give a biological interpretation to the condition. We
found in (15)

R0 = hK

c +K

∫ +∞
0 (1 − e−(σ+α)a)π(a) da
(α + σ) ∫ +∞

0 π(a) da
.

Using the identity 1−e−(α+σ)a
α+σ = ∫ a

0 e
−(α+σ)u du and then interchanging the order

of integration, we can write

R0 = hK

c +K
∫ +∞

0

π(a)∫ +∞
0 π(u) du

·
∫ +∞

0
e−(σ+α)s π(s + a)

π(a)
ds da.

The factor in the inner integral represents the probability that a parasite that has
infected a host of age a will be alive s time afterwards (when the host has age a+s).
Hence, the inner integral is the expected life of a parasite that has just infected a
host of age a.

On the other hand, the factor in the outer integral represents the probability
density that a randomly chosen host (at the PFE) is of age a; averaging, with this
weight, over all ages a, the whole integral gives the average life-time of a para-
site in a randomly chosen host. Finally, because of the expression of the infection

rate ϕ,
hK

c +K gives the rate at which one parasite produces new infections when

introduced in a host population at its parasite-free equilibrium.
Therefore the fact that the PFE is unstable when R0 > 1 means that the para-

sites can get established into the host population if a single parasite produces, on
average, more than one successfully infecting parasite during its life.

If µ(a) ≡ µ (constant), (15) becomes

hK

c +K · 1

µ+ α + σ > 1 (39)
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which is particularly easy to interpret. Indeed, this is exactly the condition found for
parasite establishment in the simplest low-dimensional approximations [1,20,23].

Note that different patterns were found in low-dimensional systems according
to the kind of approximation used [20,26]. When approximating the parasite dis-
tribution with a negative binomial of fixed aggregation parameter κ , the threshold
condition was always (39), independently of the value of κ . On the other hand,
when using a negative binomial with variable aggregation, the threshold condition
is (39) only when infections occur only with a single parasite (as considered here),
a case that gives rise to very little aggregation. If one assumes “clumped infections”
(a host gets infected with a “parcel” of larvae in the same time), it was found [23]
that the value of R0 decreases when aggregation increases.

It would therefore be interesting to study the stability of the parasite–free equi-
librium in this model under the assumption of “clumped infections”. The linear-
ization theorem could be applied as well, but the technical difficulty in studying
the spectrum of the linearized operator would be much higher, however, since
the operator F ′(p̄) would have all components different from 0, and one could
not exploit the block triangular structure of (31). It seems however possible that
one can arrive at a threshold condition of the type R0 > 1 where R0 represents
the average number of infecting ‘parcels’ produced by one ‘parcel’ as was used
in [21].

We proved here that for R0 > 1 there exists a positive equilibrium but we did
not state anything about its stability. From numerical simulations [26] it appears
that, when ξ = 1, the positive equilibrium is globally attracting for all values of
R0 > 1, while for 0 < ξ < 1 it is possible to find attracting periodic solutions.
This has been indeed proved for the low-dimensional approximations [1,23], but
we seem to be very far from a conclusion for the system considered here. Local
asymptotic stability of the positive equilibrium could be again studied through the
linearization principle, but locating the roots of the resulting characteristic equation
seems hopeless. On the other hand, using abstract bifurcation theorems, it can prob-
ably be proved that the positive equilibrium inherits the stability of the parasite-free
equilibrium: namely that, if (H5) is satisfied and R0 > 1 but small, the positive
equilibrium is stable.

One may ask what happens if (H5) is not satisfied. In that case the purely
demographic equation would generally have an attracting periodic solution [15],
although more complex behaviours cannot be excluded. One can probably extend
the techniques used here to cover the stability of periodic solutions (see [5]) and
write the condition for the stability of the parasite–free periodic solution in terms
of the average (over the cycle) number of infecting larvae produced by an adult
parasite being less than 1. It seems however unlikely that one arrives at an explicit
condition, since there are no known explicit expressions for the purely demographic
cycles.

The functions used in (3) to describe age- and density-dependence have been
chosen merely for illustrative purposes; one may have more complex expressions
for the fertility rates:

β(a, S1(t), S2(t), . . . , Sn(t))
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and analogously for µ, where Sk(t) are suitably weighted integrals of p(a, t) (see
[15]); the techniques would remain the same, although it is possible that, if µ
depends on population size, the computations of Section 3 about positive equilibria
would yield somewhat different results.

In this regard, it must be remarked that the results of Section 3 are rather unex-
pected. Indeed, Kretzschmar [19] found that, when there is no density-dependence,
the bifurcation structure is different depending on whether ξ = 1 or ξ < 1. Assum-
ing c = 0 in (2), she studied the bifurcations from the parasite–free exponential
solutions of (1):

p0(t) = ke(β−µ)t ; pi(t) = 0 for i ≥ 1;

for ξ = 1 (no effect of parasites on host fertility), the branching of an exponen-
tial solution with parasites from the parasite–free exponential solution is always
supercritical, while for ξ < 1 the bifurcation may be (the exact condition is given
in that paper) subcritical. In the latter case, positive exponential solutions would
exist also below the threshold and would not be always unique, in contrast to the
results of this paper about equilibria. She also found that a similar pattern (but with
a different condition) holds for a two-dimensional approximation of that model.
The result was also confirmed for a three-dimensional (with variable aggregation)
approximation [23]. Moreover, it was found that it held also for equilibria when
density-dependence is assumed in the same two-dimensional approximation [22].
Therefore we were surprised of the result of Section 3 that, independently of the
value of ξ , a positive equilibrium exists only if R0 > 1 and is always unique; we
do not understand fully the reasons for the difference between this result and the
previous ones.

Acknowledgements. We thank two anonymous referees for many helpful comments and
suggestions. In particular, Proposition 3 is due to one of them; this has led to major simpli-
fications in the statement and proof of Proposition 5.
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