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Abstract

We study the effectiveness of antiviral treatment in simple

SEIR models, that are at the base of models used for influenza

pandemic. The strategy is assessed in terms of the value of the

reproductive ratio R0.

We consider a general framework and analyse six different

specific cases. The same antiviral strategy is simulated in all

models, but they slightly differ in the compartmental struc-

ture. These differences correspond to different underlying as-

sumptions concerning the timing of the intervention and the

selection of individuals that receive treatment. It is shown that

these details can have a strong influence on the predicted effec-

tiveness of the strategy: for instance, with R0 = 1.8 in absence
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of treatment, different models predict that with treatment R0

can become as low as 0.4, or as high as 1.3; still, in all models

70% of infected individuals are treated, and the infectiousness

of treated individuals is reduced by 80%.

A particular assumption that can be included when mod-

elling influenza is time-varying infectivity. We consider a spe-

cific model to verify if the predicted effectiveness of antiviral

treatment is influenced by the inclusion of this assumption. We

compare the results obtained with constant and variable infec-

tivity, in relation also to the time of intervention.

It is likely that existing differences in the predictions of the

effect of control measures depend on such modelling details.

This finding stresses the need for carefully defining the structure

of models, in order to obtain results useful for policy makers in

pandemic planning.
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1 Introduction

The recent emergence of a highly pathogenic avian influenza virus and

its subsequent transmission from infected poultry to humans has raised
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concern about a future pandemic risk. An intensive preparedness plan-

ning is occurring in many countries and possible control measures

are evaluated, often with the help of mathematical models. Since a

pandemic vaccine is unlikely to be promptly available, other control

measures have been considered to contain the pandemic in its earli-

est phases, while waiting for vaccine production and distribution. In

this context, antiviral drugs are expected to play a major role both in

prevention and in treatment (Balicer et al., 2004; Monto, 2003). They

can be 70–90% effective as prophylaxis and shorten the duration of

the infectious period by 1–1.5 days when used in treatment (Cooper

et al., 2003; Monto, 2003; Longini et al., 2004; Hayden, 2001; Regoes

and Bonhoeffer, 2006; World Health Organization, 2004).

Antiviral use has been widely investigated in mathematical mod-

elling (Arino et al., 2006; Colizza et al., 2007; Cooper et al., 2006;

Ferguson et al., 2005, 2006; Flahault et al., 2006; Gani et al., 2005;

Germann et al., 2006; Longini et al., 2004, 2005; Wu et al., 2006).

Some attention has been given also to the possible emergence of an

antiviral-resistant influenza strain (Ferguson et al., 2003; Lipsitch et al.,

2007; Regoes and Bonhoeffer, 2006), a real threat to the effectiveness

of antiviral-based policies. But results of different studies are often

in disagreement: if some authors draw positive conclusions about the

possibility of slowing the spread of the infection and reduce the attack

rate (Barnes et al., 2007; Colizza et al., 2007; Gani et al., 2005; Ger-
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mann et al., 2006; Longini et al., 2004, 2005; Roberts et al., 2007), even

in circumstances in which a resistant strain spreads widely (Lipsitch

et al., 2007), others are more reluctant and suggest that a containment

policy based on antivirals alone is unlikely to be successful (Ferguson

et al., 2005, 2006; Flahault et al., 2006). These differences depend ba-

sically on the model considered and on the assumptions used in the

model regarding the intervention.

Since many countries plan to rely on antivirals to face the pandemic

during the early months and antivirals will probably be the only phar-

maceutic intervention available in the initial phase, there is an evident

need to clarify if and how the evaluation of antiviral efficacy is influ-

enced by the model assumptions.

Instead of evaluating different strategies, we focus on one strat-

egy and investigate its effectiveness in relation to the structure of

the model, and its underlying assumptions. We consider the simplest

scheme that can be considered to model influenza spread, i.e. a de-

terministic homogeneous SEIR (Susceptible - Exposed - Infectious -

Removed) model. Alexander et al. (2008) have recently studied the

optimal scheduling of antiviral treatment through the analysis of a ho-

mogeneous SEIR model with continuous age of infection. We extend

the model in the direction of considering several different options about

which infected individuals are treated and when; on the other hand,

we subdivide the infectious period in discrete stages. We then anal-
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yse quantitatively specific subcases of the general model; some of the

cases correspond to models used in previous studies. Each case derives

from the general model making precise assumptions on the time and

way of intervention (in particular on the duration of infectivity be-

fore being testable and before the diagnosis), and therefore setting the

pa- rameters of the general model appropriately. But this parameter

choice gives rise to six models that, even if all deriving from one general

model, have different structures corresponding to different modelling

choices. Moreover, we always assume to treat the same fraction of

infected, and to have the same efficacy of antivirals. All the models

considered are easy to analyse mathematically, so that it is possible

to quantify the effect of different modelling choices, whose relevance is

usually disregarded to concentrate the attention on parameters uncer-

tainties.

These models have all constant infectivity. Through the comparison

to a model that includes time varying infectivity, we then investigate

the effect of variable infectivity, and how it influences the evaluation

of antivirals efficacy.

Many authors have investigated the effect of different antiviral-

based interventions using rather complex models, including social and

spatial structures, stochastic fluctuations and other factors. Even if a

homogeneous model may be inappropriate to simulate a realistic in-

fluenza pandemic, it constitutes the basis of most models considered in
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the literature. Its transparency allows to evaluate how the structure of

the model influences the conclusions about the effectiveness of antiviral

treatment. Complex models are definitely more realistic and suitable

to simulate a pandemic, but they may obscure the role of underlying

assumptions.

Our results may be useful when structuring more complex mod-

els, such as microsimulation models, and highlight the attention that

should be paid to details of the model. Since the SEIR framework is

always the skeleton of more complex models, the comparison between

the results found with these models may help to understand the role of

model assumptions in the evaluation of the efficacy of antiviral-based

policies in pandemic containment.

2 Methods

In compartmental models with an SEIR structure the population is

divided in four classes according to the disease state: susceptibles (S),

that are all the individuals that can be infected, exposed (E), that

are the individuals that have been infected but are not infectious yet

and do not show symptoms, infectious (I), that is infected people that

can transmit the infection, and immune or removed (R), that are all

the individuals that have recovered or, in the worst cases, died. For

influenza the mean latent and infectious period have been estimated to
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approximately 1 (Ferguson et al., 2005) and 4 (Cauchemez et al., 2004;

Hyman and LaForce, 2003; Longini et al., 2004; Mills et al., 2004) days

respectively.

When modelling influenza many authors (Alexander et al., 2008;

Arino et al., 2006; Chowell et al., 2007; Colizza et al., 2007; Ferguson

et al., 2003; Nuno et al., 2007; Wu et al., 2006) divide the infectious

period in phases to allow for asymptomatic stages, differences in infec-

tivity or in symptoms severity. This allows also to structure treatment

as administered at certain phases of infection. An alternative, which

introduces an element of complexity into the model, would be to explic-

itly use the time-since-infection as a variable (Alexander et al., 2008;

Brauer, 1995; Grais et al., 2003; Roberts et al., 2007).

We propose a model with a general structure in which the infectious

period is divided in three phases. If no treatment is modelled, indi-

viduals progress through three infectious subclasses (I1, I2 and I3) and

finally recover. We assume that infected individuals, during the second

infectious phase may be classified (with probability p) as individuals

that can receive treatment and therefore enter class Y (individuals

potentially selected for treatment) at the end of the period; individu-

als not classified for treatment enter the third infectious stage (class

I3). From class I3 individuals recover spontaneously. Individuals in

class Y (suitable for treatment) have the possibility to be treated, or

may recover spontaneously, before actually receiving treatment. The
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compartmental representation of the model is shown in Figure 1. Our

model includes, we believe, a great variety of cases considered in the

literature. Simpler models with fewer infectious stages can be obtained

by formally setting equal to ∞ the exit rate from the missing stages.
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Figure 1: Compartmental representation of the general model considered. Indi-
viduals are divided in classes according to the disease state: S (susceptibles), E
(exposed), I1 (infectious during the first stage), I2 (infectious during the second
stage), I3 (infectious during the third stage), Y (infectious that can receive treat-
ment), T (treated), R (removed).

When simulating antiviral treatment of infected individuals we ig-

nore preventive antiviral prophylaxis of their contacts, which is gener-

ally part of the recommended intervention strategies. Indeed in com-

partmental models, as the ones we are considering (Colizza et al., 2007;

Gani et al., 2005; Germann et al., 2006; Longini et al., 2004, 2005), in-

dividual contacts are not defined so that such an intervention cannot

be modelled exactly, although it can be approximated by an appro-

priate reduction of within-household transmission rates (Rizzo et al.,

2008).

The classification between individuals that can receive treatment

and those that cannot could depend on the severity of symptoms, or
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could depend on behavioural or social features (geographical isolation,

limited access to medical resources, tolerance of disease symptoms).

We suppose in what follows that there is no difference in infectious-

ness between the two groups. Several authors (Colizza et al., 2007;

Alexander et al., 2008) have assumed that individuals not selected for

treatment are asymptomatic infectives and that they have a lower in-

fectiousness; on the other hand, we stress the relevance of the potential

presence of infectives that are as infectious as the others, but cannot

be reached by treatment. Asymptomatic infectives with low infectivity

add little to the reproduction ratio of the infection, so that ignoring

them does not affect strongly the results.

The reproductive ratio of the model can be easily computed using

the method of Diekmann and Heesterbeek (2000) and van den Driess-

che and Watmough (2002) and it is given by

R0 = S0β [ 1

γ1

+
1

γ2

+ (1 − p)
1

γ3

+ p (
1

α + γY

+
α

α + γY

r

λ
)] (1)

where S0 is the fraction of individuals initially susceptible, r represents

the reduction in the transmission due to treatment (corresponding to

AV EI in (Longini et al., 2004), 80% in the numerical example), β is

the transmission rate, γ1, γ2, γ3 and γY are the exit rates from class I1,

I2, I3 and Y respectively, α is the treatment rate of selected individuals

and λ is the recovery rate of treated individuals. We also assume that
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antivirals shorten the infectious period of treated individuals (by 1 day

in the numerical example).

The model can be viewed as an age of infection epidemic model

and analyzed using the approach of the Kermack-McKendrick model

proposed in (Brauer, 2005). The analysis shows that R0 is a threshold

value: if R0 ≤ 1, starting from any initial state S0, only a few new

infections will occur, without a major epidemic; if R0 > 1, starting

from a large enough susceptible fraction S0, a major epidemic will oc-

cur; during the outbreak the number of susceptibles can only decrease

and, when the epidemic dies off, will finally settle to an equilibrium

value, that depends on the value of R0. The larger R0, the smaller is

the number of individuals that escapes the infection (Diekmann and

Heesterbeek, 2000).

It seems therefore adequate to judge the efficacy of antiviral treat-

ment through the resulting reduction of R0, as computed from (1).

An antiviral treatment is generally measured by the reduction in in-

fectivity (r), the reduction of the period of infectivity (that will be

parametrised later), and by the fraction P of the infected that are

treated. A standard computation shows that this is given by

P = p
α

α + γY

(2)

It is however clear from (1) that P , r and the length of the period
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of infectivity of treated individuals are not sufficient to obtain R0. In

order to understand better which are the factors leading to larger or

smaller reductions of R0, we have considered several submodels, most

of which have been chosen by other authors to investigate the effect of

antivirals. The compartmental representation of each model is shown

in Fig. 2.

Although the formulae given above apply to the general model,

all the cases we will consider in detail belong to one of two model

structures: either p is equal to 1, so that all infected individuals enter

the class Y and can be selected for treatment; or γY is equal to 0,

so that all individuals entering class Y (those potentially selected for

treatment) are actually treated. It will be seen later that choosing one

structure or the other changes substantially the estimate of the efficacy

of antiviral treatment.

In the first model all individuals are potentially treatable: when

they leave the latent class they go directly to class Y , the only infectious

class. From then on, they either enter the class of treated individuals

(at rate α) or recover (at rate γY ). This is a special case of the general

model and may be obtained letting γ1 and γ2 go to infinity and setting

p = 1. According to (2) the overall probability of being treated is given

by α/(α + γY ). A model with this structure has been previously used

by Flahault et al. (2006) to simulate antiviral treatment of cases.

In the second model we assume that, as the individuals leave the
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latent class, they are immediately classified either (with probability p)

as individuals that will be treated (subgroup Y ) or (with probability

1 − p) not (subgroup I3). Individuals in subgroup Y will enter the

group of treated individuals at rate α, while those in subgroup I3 will

recover at rate γ3. This model may be obtained letting γ1 and γ2 go

to infinity and setting γY = 0 in the general model. This model has

the same structure as the models proposed by Alexander et al. (2008)

and Chowell et al. (2006), even if in their models only a fraction of

individuals selected for treatment are actually treated (that is γY 6=

0), and individuals in class I3 are considered as asymptomatic with

reduced infectivity.

Influenza is characterised by a short incubation period, a high at-

tack rate and a lack of disease specific symptoms (Balicer et al., 2004).

All these epidemiological characteristics can impose difficulties in iden-

tifying cases promptly when they enter the infectious class and may

cause a delay in treatment. This aspect has been considered in sev-

eral studies (Ferguson et al., 2005, 2006; Germann et al., 2006; Longini

et al., 2005), in which intervention has been postponed to the second

or third day after symptoms onset. Therefore all the following mod-

els include a delay in treatment, assuming that some time is needed to

identify cases and organise treatment. This period might be considered

also as an infectious but asymptomatic stage.

In the third model we assume that at the end of this phase, in-
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fectious individuals are either identified and treated or they enter the

class I3 and will not be treated. A similar model has been proposed by

Gani et al. (2005), and Ferguson et al. (2003) have introduced an anal-

ogous mild asymptomatic infection stage in their model. The model is

obtained letting γ1 and α go to infinity.

Models 4 and 5 integrate the presence of the first phase of unrecog-

nised infection with the treatment scheme used in Models 1 and 2,

respectively. In Model 4, after a first infectious phase, all individuals

are potentially treatable (class Y ). Then they either enter the treated

class (at rate α) or recover (at rate γY ). To obtain this model we have

set p = 1 and let γ2 go to infinity in the general model. In Model 5, af-

ter a first infectious phase, individuals are assigned either to subgroup

I3, or to subgroup Y . Individuals in subgroup Y will enter the group

of treated individuals at rate α, while those in subgroup I3 will recover

at rate γ3. This is obtained letting γ2 go to infinity and setting γY = 0.

A model with this structure has been considered by Wu et al. (2006)

(with hospitalised instead of treated individuals) to include an initial

asymptomatic phase of the infectious period, while similar infectious

stages, but in a more complex model, have been proposed by Nuno

et al. (2007).

As models 4 and 5 correspond respectively to models 1 and 2, Model

6 is comparable to Model 3. After the phase I1, individuals enter class

I2 during which they are either identified and treated or they enter the
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Figure 2: Compartmental representation of the six models considered. Individuals
are divided in classes according to the disease state: S (susceptibles), E (exposed),
I1, I2, I3 (infectious in different stages), Y (selected for treatment), T (treated), R
(removed). The transmission rate β is assumed to be constant.
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third stage of the infectious period and then recover. This model is

obtained from the general model letting α go to infinity.

For each model we have computed the average infectious period

TI in absence of intervention, the average infectious period TAV for a

treated individual and the average infectious period TnoAV for a non-

treated individual. We will use their mathematical expressions, given

in Table 1, for parameter calibration. The reproductive ratio R0 is

computed directly from (1), using the assumptions on the parameters

made for each model.

# TI TAV TnoAV R0/βS0

1) 1

γY

1

α+γY

+ 1

λ
1

α+γY

1

α+γY

+ α
α+γY

r
λ

2) 1

γ3

1

α
+ 1

λ
1

γ3

(1 − p) 1

γ3

+ p
(

1

α
+ r

λ

)

3) 1

γ2

+ 1

γ3

1

γ2

+ 1

λ
1

γ2

+ 1

γ3

1

γ2

+ (1 − p) 1

γ3

+ p r
λ

4) 1

γ1

+ 1

γY

1

γ1

+ 1

γY +α
+ 1

λ
1

γ1

+ 1

γY +α
1

γ1

+ 1

α+γY

+ α
α+γY

r
λ

5) 1

γ1

+ 1

γ3

1

γ1

+ 1

α
+ 1

λ
1

γ1

+ 1

γ3

1

γ1

+ (1 − p) 1

γ3

+ p
(

1

α
+ r

λ

)

6) 1

γ1

+ 1

γ2

+ 1

γ3

1

γ1

+ 1

γ2

+ 1

λ
1

γ1

+ 1

γ2

+ 1

γ3

1

γ1

+ 1

γ2

+ (1 − p) 1

γ3

+ p r
λ

Table 1: Results found analysing Models 1 to 6 (#). TI , TAV and TnoAV are,
respectively, the average infectious period in absence of intervention, of treated
and untreated individuals with intervention. R0 is the reproductive ratio of the
model, found from (1), as βS0 times the expression reported in the last column;
β is the transmission rate of untreated individuals and S0 is the initial fraction of
susceptible individuals; other parameters can be seen in Fig. 2
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3 Numerical results

Parameter calibration

In order to compare the values for R0 found in different models, that

include different parameters, it is necessary to properly calibrate the

parameters. We have estimated the values of the parameters to inves-

tigate the effect of intervention on the value of R0 and how this effect

vary when we consider different models.

First of all, we require that, in absence of antiviral treatment, the

mean infectious period has to be the same (4 days) in all models. This

implies the condition TI = 4, where TI is the mean infectious period

in absence of treatment and is given, for each model, in Table 1.

Secondly, the probability of receiving treatment, computed using

(2) is the same (P = 0.7) in all models. In Models 1 and 4 this

probability is given by α/(α + γY ), and thus determines the value of

α, while in Models 2, 3 and 5 it is represented by p and so we are free

to set α. In Models 1 and 2 individuals receive treatment, on average,

1/α days after leaving class E; therefore in Model 2 we have kept α as

in Model 1. Analogously in Model 5 we have taken it as in Model 4

(individuals receive treatment, on average, 1/α days after leaving class

I1).

In Model 3 we assume individuals have the possibility to be treated

one day after becoming infectious. This could be due, for example, to
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a first asymptomatic phase. Therefore we set 1/γ2 = 1. Then from the

relation 1/γ2 + 1/γ3 = 4 we can estimate γ3.

In Models 4 to 6 we have introduced a 1 day delay in treatment

administration, which gives 1/γ1 = 1. Using the assumption of a 4

days natural infectious period, we can estimate γY and γ3.

As for the effect of antivirals, we assume that the infectiousness is

reduced by 80% by antivirals, hence r = 0.2.

Finally, we need to establish the value of λ, reflecting the shortening

of the infectiousness period of treated individuals. A commonly used

assumption (see for example Colizza et al., 2007) is that the infectious

period of treated individuals TAV is 1 day shorter than TnoAV , the in-

fectious period of untreated individuals. However, Table 1 shows that,

for Models 1 and 4, TAV > TnoAV ; hence, it is not possible to require

TAV = TnoAV − 1. In other words, the time spent in the infectious

class by a treated individual is on average longer than the infectious

time of an individual that does not receive treatment. Nevertheless, if

1/λ = 1/γY , that is if treatment has no effect on the duration of the

infectious period, on average the individuals will stay in the infectious

class 1/γY days, as one would expect; however, those being treated

stay there longer than the average, while those not being treated less

than the average. This apparently bizarre fact comes from the assump-

tion that being treated and recovering are two competing risks; hence,

individuals that receive treatment are those that naturally would have
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a longer infectious period.

To overcome this problem, we choose to assume, following Colizza

et al. (2007), TAV = TI − 1, which allows us to find λ. For Models 2,

3, 5, and 6, since TnoAV = TI , this makes no difference, and we can

see from Table 1 that this relation can be used to obtain λ as long as

1/γ3 − 1/α > 1 (for Models 2 and 5) or 1/γ3 > 1 (for Models 3 and 6).

Similarly, for Models 1 and 4, provided that 1/γY −1/(α+γY ) > 1,the

relation TAV = TI − 1 allows us to find λ.

In Models 1 and 4 we actually treat individuals with an infectious

period longer than the average TI , so the assumption TAV = TI − 1

may be too optimistic. Another possibility would be to consider T ∗

AV ,

defined as the infectious period of treated individuals when treatment

has no effect (i.e. λ = γY ) and to require TAV = T ∗

AV − 1, which

corresponds to 1/λ = 1/γY − 1. Results do not differ significantly; the

highest variation is found with Model 1: if we assume a reproductive

ratio of 1.8 in absence of treatment, we obtain R0 = 0.65 with the

hypothesis TAV = TI − 1 and R0 = 0.74 with the hypothesis TAV =

T ∗

AV − 1. Therefore we present only the results obtained with the first

hypothesis.

The parameter values used are given in Table 2.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

γ1 (d−1) +∞ +∞ +∞ 1 1 1
γ2 (d−1) +∞ +∞ 1 +∞ +∞ 1
γ3 (d−1) 0.25 0.25 0.33 0.33 0.33 0.5
γY (d−1) 0.25 0 0 0.33 0 0
α (d−1) 0.58 0.58 +∞ 0.77 0.77 +∞

λ (d−1) 0.56 0.78 0.5 0.91 1.4 1
p 1 0.7 0.7 1 0.7 0.7
r 0.2 0.2 0.2 0.2 0.2 0.2

Ri
0/R

noAV
0 0.36 0.65 0.55 0.51 0.73 0.69

Table 2: Parameters values of the models. λ has been calibrated requiring TAV =
TI −1. The last row shows the effectiveness of antiviral treatment measured as the
reduction in the reproductive ratio R0. RnoAV

0 represents the reproductive ratio of
general model without intervention (that is with p = 0, while Ri

0 is the reproductive
ratio of Model i.

Reduction of R0

The general model without intervention is characterised by an average

infectious period 1/γ = 1/γ1 + 1/γ2 + 1/γ3, the sum of the average

duration of each infectious phase. Its reproductive ratio is given by

R0 = βS0/γ (that is (1) with p = 0), where β is the transmission

rate and S0 the initial fraction of susceptible individuals. R0 is a key

epidemiological parameter (Diekmann and Heesterbeek, 2000) and it

is often used to assess the effectiveness of control measures. A strategy

able to lower the reproductive ratio is generally considered successful,

in particular if it reduces R0 to a value below 1. In fact, if R0 < 1,

the number of infections will, on average, decline and the epidemic will

quickly get extinct.

Using the parameters values given in Table 2, we have evaluated
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the effectiveness of the same intervention strategy when implemented

in different ways, as described by the models considered. We have

computed the ratio between the R0 of the model without intervention

and the reproductive ratio of the model with intervention for each of

the models investigated. This ratio tells how much the reproductive

ratio is reduced under antiviral treatment. Results are given in Table 2

and show how the reduction is very sensitive to the assumptions made

when modelling the intervention. In Models 1 and 2 individuals have

the same probability of receiving treatment and, on average, they are

treated after 1.7 days in both models. But in Model 1 the intervention

seems to be much more effective. With an hypothetical R0 of 1.8, a

value commonly used to simulate a future pandemic (Ferguson et al.,

2005), using Model 1 we would conclude that antivirals are able to

contain the pandemic, reducing the value of R0 below 1. The same

conclusion is not reached using Model 2.

As expected, the introduction of a delay in antivirals administration

reduces significantly the effectiveness of the control measure. This can

be observed comparing Model 1, 2 and 3 with Models 4, 5 and 6, which

are their respective refinements. Assuming hypothetically R0 = 1.8,

antiviral treatment would reduce it to 0.65, 1.17 and 0.99 if simulated

with Model 1, 2 or 3 and to 0.9, 1.3 and 1.24 with Model 4, 5 or 6,

where a one day delay has been included.

We have assumed a treatment delay of one day, but some authors
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(Ferguson et al., 2005) have considered a delay of two days. To inves-

tigate the effect of a longer delay we can compare, for example, Model

3 and Model 6. With a one day delay (Model 3) we have R0 = 2.2βS0.

A two days delay (Model 6) gives R0 = 2.76βS0. As expected, a longer

delay in antivirals administration reduces significantly the effectiveness

of the intervention.

4 A comparison between constant and

varying infectivity

Isselbacher et al. (1994) have observed the natural course of influenza

and have reported its clinical characteristics in an otherwise healthy

28-years-old male. According to them, the virus shed is maximal 2 days

after the onset of illness and then decreases and reaches a minimum

on day 5. Taking these results into consideration, it is reasonable to

assume that the infectivity of an individual varies in time, determining

a variability in the transmission rate. To assess the importance of con-

sidering different levels of infectivity, we have designed a specific model

that allows us to compare the results obtained assuming constant or

varying infectivity. The model follows basically the structure of Model

6, but we assume that treated individuals follow an infection path sim-

ilar to the untreated ones, with two phases characterised by different

infectivity. Although other model structures are certainly possible,
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this allows us to understand the interaction of treatment timing with

variable infectivity.

Precisely, we make the following assumptions: without treatment,

after the latent period individuals go through three infectious stages,

each characterised by a specific infectivity and then recover. Accord-

ing to the results of Isselbacher et al. (1994), we assume a first low-

infectivity stage lasting 1/γ1 = 1 day, followed by a second stage with

high infectivity lasting 1/γ2 = 2 days and by a third stage again with

low infectivity lasting 1/γ3 = 1 day. Varying infectivity is translated

in non-constant transmission rates. According to the results of Issel-

bacher et al. (1994), we have assumed β1 = β3 = 3/5β2, thus repre-

senting lower infectivity during the first and third stage. β1, β2 and

β3 are the transmission rates during the three infectious stages respec-

tively. Infected individuals can receive treatment at the end of the first

stage (with probability p1), thus entering class T2 or after the second

stage (with probability p2), entering class T3. The transmission rate

of treated individuals is reduced by a factor r, as in previous models,

and therefore it will be equal to rβ2 in class T2 and to rβ3 in class

T3. We further assume that individuals stay in class T2 1.5 days be-

fore advancing to class T3, while individuals treated after the end of

the second infectious stage recover after 0.5 days. The compartmental

representation of the model is given in Figure 3.
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Figure 3: Compartmental representation of the model considered to include varying
infectivity. Individuals are divided in classes according to the disease state: S
(susceptibles), E (exposed), I1, I2, I3 (infectious in different stages), T2 (treated at
the end of the first infectious stage), T3 (treated at the end of the second infectious
stage), R (removed).

The reproductive ratio of the model is given by

R0 = S0 [β1

1

γ1

+ β2 ((1 − p1)
1

γ2

+ p1

r

λ1

) +

+ β3((1 − p1) (1 − p2)
1

γ3

+ p1

r

λ2

+ (1 − p1)p2

r

λ2

)] (3)

where λ1 and λ2 are the recovery rates of treated individuals.

The probability of receiving treatment in the model considered is

given by P = p1+(1−p1) p2 and we have set it equal to 0.7, coherently

with the previous numerical examples. Defining Q = p1

P
as the pro-

portion of individuals treated after the first infectious phase, we have

investigated the dependence of the effect of antiviral treatment on the

timing of intervention. Namely, varying Q between 0 and 1 we change

from a scenario where all the treated individuals receive prophylaxis

after the second infectious stage (very late) to a scenario where treat-

ment is administered to all selected individuals after the first infectious
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stage (that is two days in advance). Further, for a given Q, we can com-

pare results obtained with varying and constant infectivity, obtained

setting β1 = β2 = β3.

Figure 4 shows that introducing variable infectivity can influence

the results, although to a limited extent quantitatively, and makes the

time of intervention even more crucial in the evaluation of the effec-

tiveness of antiviral treatment. As expected, the higher the proportion

of individuals treated after the first phase, the more effective the in-

tervention is, both with variable and with constant infectivity. For

example, with varying infectivity, assuming R0 = 1.8 in absence of

treatment we obtain R0 = 0.92 if we treat all the selected individuals

after the first phase (Q = 1) and R0 = 1.6 if we treat all the selected

individuals two days later (Q = 0). From Q = 0 to Q = 1 R0 decreases

linearly. In case of constant infectivity the results are analogous, but

R0 varies only from 0.97 to 1.51.

5 Conclusions

We have considered different models for an epidemic with antiviral

treatment. All models have an SEIR structure and derive from the

same general model. We have shown that details in the model as-

sumptions can strongly influence the evaluation of antiviral treatment

as a containment measure for pandemic influenza. It must be remarked
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Figure 4: Relative effectiveness of antiviral treatment, computed as the ratio be-
tween the reproductive rate with intervention (model in Figure 3) and the repro-
ductive rate of the plain SEIR model. In the model individuals may be treated
at the end of the first or second infectious phase. Q represents the proportion of
treated individuals that receive prophylaxis after the first phase. The graph shows
results for varying and constant (i.e. β1 = β2 = β3 = βT = β) infectivity.

that, although the compartmental structure of some models considered

may appear unusual, they are all quite natural and suitable to simulate

the intervention; some have indeed been used in previous studies.

As discussed in Section 2, there is an implicit difference between

Models 1 and 4, on one side, and Models 2, 3, 5 and 6 on the other: in

Model 1 (and 4) the individuals that do not get treatment are those

who recover faster than they can be targeted for treatment; this has
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the consequence, already discussed, that the average infection period

of untreated individuals is shorter than the average infectious period in

the absence of intervention. In Model 2 (and 3, 5 and 6) it is assumed

that infectives can be in principle distinguished between those that will

be treated and those that will be not; the average infection period of

untreated individuals (as well as their infectivity) is exactly the same

as the average infectious period in absence of interventions.

From the results shown in Table 2 it can be seen that there is indeed

a corresponding difference in the reduction of R0 because of antiviral

treatment between the two groups of models. This can also be seen

in the formula for R0: in Models 1 and 4 the probability of receiving

treatment is given by P = α
α+γY

and the mathematical expression of

R0 can be rewritten as R0 = βS0 ((1−P ) 1

γY

+ P r
λ
) (+βS0

1

γ1

in Model

4). In Models 2 and 5 P = p and R0 = βS0 ((1 − P ) 1

γ3

+ P ( 1

α
+ r

λ
))

(+βS0
1

γ1

in Model 5). Considering that γY = γ3 in Models 1 and 4, we

can see that the difference between them is in the term PβS0

α
, the force

of infection of treated individuals during the period before treatment

starts. In other words, the value of R0 in Models 1 and 4 looks as if

we were ignoring the fact that treated individuals are infectious before

receiving treatment.

These results show that the question of who is treated is decisive:

it is very different if treated individuals are those, for one reason or an-

other, outside the reach of the health system, if they are asymptomatic
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with low infectivity, or those that recover faster. These assumptions are

often implicitly included into the structure of the model, that should

therefore be chosen carefully.

A second factor strongly affecting the effectiveness of intervention

is the timing of treatment. This can be seen by comparing Models 1, 2

and 3, on one side, with Models 4, 5 and 6, that are analogous, except

that a first infectious period is added, where no treatment is possible.

Clearly, the inclusion of a time delay in drug administration reduces

significantly its impact on the dynamics of the epidemic.

Time varying infectivity makes timing of intervention even more

crucial. In fact, if infectivity is lower in the first and last stage of the

infectious period, and higher in the middle stage, a late intervention is

even less effective than in the case of constant infectivity: at the end

of the middle stage, an individual will have already infected almost all

the individuals it would eventually infect. On the other hand, missing

treatment in the first infectious stage is less crucial, since few individu-

als would be infected anyway during that stage. This can be seen from

Fig. 4 that shows the effectiveness of intervention as a function of the

proportion Q of individuals treated after the first stage: there exists a

threshold value Qt (in the numerical example Qt ≈ 0.53) such that if

Q < Qt the intervention is more effective if infectivity is constant than

if it is variable (most individuals treated after the second stage), while

it is less effective if Q > Qt (most individuals treated after the first
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stage).

Our study shows that, when studying the effectiveness of anti-viral

treatment, much attention should be paid to the assumptions (often

implicit) about the timing of intervention and the individuals that get

treatment: even if the same intervention is apparently being modelled,

different models can lead to different conclusions. The detailed struc-

ture of the model is very relevant and should be carefully evaluated

and specified when assessing the importance of the results.

Although the models considered are all SEIR-type models for a

homogeneous population, the results immediately translate to more

complex SEIR models used to simulate an influenza pandemic. In fact,

R0 for an epidemic in a metapopulation is strongly influenced by the

value of R0 in each population in isolation (Diekmann and Heester-

beek, 2000), and may even be the same under some special choices

of the contact matrix (Colizza et al., 2007). Individual-based models

(Ferguson et al., 2005) are more flexible, and can incorporate detailed

assumptions about the timing of infectiousness and antiviral use, as

well as allowing for antiviral prophylaxis of case contacts. Still, the

results of this paper stress the need of making consistent and realis-

tic choices when building any kind of model, and especially of making

them transparent. Different results on the evaluation of containment

strategies may depend on hidden assumptions in the model structure.

Hence, the structure of models has to be carefully defined, in order
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to obtain results that can be useful for policy makers in pandemic

planning.
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