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Due to the recent emergence of H5N1 virus, the modelling of pandemic influenza has become a relevant
issue. Here we present an SEIR model formulated to simulate a possible outbreak in Italy, analysing its
structure and, more generally, the effect of including specific details into a model. These details regard
population heterogeneities, such as age and spatial distribution, as well as stochasticity, that regulates
the epidemic dynamics when the number of infectives is low. We discuss and motivate the specific mod-
elling choices made when building the model and investigate how the model details influence the pre-
dicted dynamics. Our analysis may help in deciding which elements of complexity are worth including
in the design of a deterministic model for pandemic influenza, in a balance between, on the one hand,
keeping the model computationally efficient and the number of parameters low and, on the other hand,
maintaining the necessary realistic features.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In 1997, the emergence of the highly virulent A/H5N1 avian
influenza strain [1] has raised concern over the risk of a future
influenza pandemic [2]. The virus has proven its ability to pass di-
rectly from birds to humans [3] and could potentially acquire the
capacity for efficient person-to-person transmission. Therefore it
is considered to be the leading contender as the source of the next
human influenza pandemic [4,5]. Nowadays, the increasing mobil-
ity of the population at a global level and the speed of means of
transport would make the control of the spread of infection partic-
ularly problematic. For these reasons, countries have been urged to
strengthen their preparedness plans [6], following the 2005 WHO
recommendations [7].

A range of measures have been suggested in order to contain a
possible pandemic, including those that involve personal actions
(such as hand-washing and mask wearing), non-pharmaceutical
interventions (like international air travel restriction, social dis-
tancing measures and quarantine [8]), and pharmaceutical inter-
ventions (like antiviral drugs and vaccines [4]). Application of
public health measures will reduce the number of people who
are infected, need medical care and die during an epidemic, thus
lessening the impact of mass absenteeism on key functions (e.g.
delivering health care, food supplies, fuel distribution, etc.). Several
countries are therefore planning a wise use of available resources,
ll rights reserved.

: +39 0461 881624.
li).
using mathematical models to obtain quantitative estimates of the
likely pattern and speed of propagation of a pandemic and of the
possible impact of different interventions [9–14].

Very detailed individual based models have been developed
[12,13,15–19]. These models simulate the stochastic spread of
influenza in populations of persons interacting in known contact
groups, according to real sociodemographic data. They represent
a typical heterogeneous community and allow for detailed predic-
tions, but they require many data, often not available.

On the other hand, classical deterministic compartmental mod-
els have the main advantage of simplicity. They involve relatively
few parameters and have been considered as an initial step, before
more complicated models are invoked [20,21]. When little is
known about the disease and parameter values can only be
guessed, they represent an effective tool that can easily be adapted
to different, still unknown, settings. These models have been sug-
gested for the analysis in specific regions [20,22], but have also
been extended to predict the geographic spread of the disease
[23–26]. In this case the environment is often divided into discrete
regions, called patches, with the individuals moving through dif-
ferent patches and thus spreading the infection.

Here we analyse the SEIR model used to simulate the spread of
pandemic influenza in Italy [27]. The model includes an age-and-
space contact matrix, which has been built from available census
data. We give the details of the estimation procedure and, through
the comparison with a population survey-based contact matrix, we
show that our procedure supplies a reliable matrix of contacts. We
describe the model in all its components, discussing the specific

mailto:alunelli@science.unitn.it
http://www.sciencedirect.com/science/journal/00255564
http://www.elsevier.com/locate/mbs


A. Lunelli et al. / Mathematical Biosciences 220 (2009) 24–33 25
modelling choices and presenting a systematic analysis of the
influence of each component on the predicted epidemic curves.
Our study provides a first assessment of the relevance of including
precise details when modelling an epidemic with compartmental
models and may help in deciding which elements of complexity
are worth including in the design of a model. Our analysis may
thus help to balance between the necessity of keeping the number
of parameters low and the complexity of the model limited, and
the necessity of having a realistic model, able to yield reliable sim-
ulations of epidemic scenarios. Finally, we show how we have
organised the simulations and calibrated the model to simulate
possible pandemic scenarios and how the parameter choices influ-
ence the evaluation of the effectiveness of control strategies.

2. The model

The model is structured as an SEIR model. The population is di-
vided into four classes according to the disease state: susceptible
ðSÞ, exposed ðEÞ, infectious ðIÞ and removed ðRÞ individuals. People
who become infected enter the latent period during which they do
not show symptoms and cannot spread the infection. This is fol-
lowed by the infectious period that ends when the individuals re-
cover or die. For simplicity, we do not distinguish between
symptomatic and asymptomatic infectives, who, as often assumed,
may differ in their infectiousness [12,19].

Epidemic dynamics are influenced by population heterogene-
ities (e.g. influenza incidence may vary considerably with age
[28]) and individual contacts are definitely not homogeneous.
Moreover, control strategies are often designed differently for dif-
ferent age groups [29]. In order to include these aspects into the
model, the population has been divided in groups.

We have defined six age classes for age-specific control mea-
sures: infants 0–2 years of age, children 3–14 years of age, teenag-
ers 15–18 years of age, young adults 19–39 years of age, adults 40–
64 years of age and elderly aged 65 or more. Furthermore, each age
class has been divided in two subclasses, depending on activity le-
vel: a part of the population will be more active and will have a
higher number of social contacts, while another part will spend
more time at home and thus have fewer social contacts. Although
such a distinction is clearly simplistic, it reflects existing popula-
tion heterogeneities, and makes simulated epidemic curves fit bet-
ter to simulated data from individual-based models, as those
proposed by Ciofi degli Atti et al. [19]. Individuals are then located
in subgroups corresponding to the Italian geographical regions.

Thus, each population group is identified by two indexes:
i ¼ 1; . . . ;m, representing age and/or activity intensity, and
p ¼ 1; . . . ; s, denoting the spatial region where the individual lives.
Considering two activity groups for each age-class and 20 geo-
graphical patches gives m ¼ 12 and s ¼ 20.

We will use the variables Sp
i ; E

p
i ; I

p
i and Rp

i , representing the num-
ber of susceptibles, exposed, infectives and removed of class i in re-
gion p. The population size Np

j of each class of each region is
supposed to be constant, which seems a reasonable hypothesis
due to the short epidemic course of influenza.

Finally, the model is described by the following system of differ-
ential equations:

dSp
i

dt ¼ �Sp
i

P
j;q

bpq
ij

Iq
j

Nq
j

dEp
i

dt ¼ Sp
i
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j;q

bpq
ij
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j

Nq
j
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i

dt ¼ mEp
i � cIp

i

dRp
i

dt ¼ cIp
i i; j ¼ 1; . . . ;12

p; q ¼ 1; . . . ;20

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ
where 1=m and 1=c represent, respectively, the mean length of the
latency and the infectivity periods. In all simulations we fixed these
values to 1 [30] and 4 [15,31,32] days, respectively.

The transmission rate bpq
ij represents the average number of

individuals of class j and region q with whom a susceptible of class
i and region p makes a contact sufficient to result in transmission
in the unit time. A fraction Iq

j =Nq
j of these individuals will be infec-

tious and so the susceptible will be infected. To a large extent, the
behaviour of the model is determined by the ðs �mÞ � ðs �mÞ (in our
case 240� 240) contact matrix. Obtaining a reliable estimate of
2402 parameters would require many unavailable data, and also
performing a sensitivity analysis on all of them is unfeasible.
Therefore, we have made a priori specific assumptions on the
structure of the matrix, used independent information to approxi-
mate the value of some parameters, and finally left a couple of free
parameters, on which it was possible to perform a sensible sensi-
tivity analysis. Details on how we built the contact matrix are gi-
ven in the next subsection.

2.1. The structure of the contact matrix

The contact matrix bpq
ij has been structured considering sepa-

rately contacts among regions and among activity/age groups
within a region.

Coupling between different regions has been implemented dis-
tinguishing between long- and short-distance travelling. Long-dis-
tance travelling has been modelled through a national air-traffic
matrix F, whose element Fpq is defined as the mean weekly num-
ber of flights from region p to region q. Air transportation data
have been obtained from the web sites of Italian airports and refer
to the winter season 2005–2006. Short-distance travelling is rep-
resented by a symmetric contact matrix T, whose pq entry is 1 if
daily travelling between regions p and q is possible and 0 other-
wise. Therefore all patches are directly or indirectly connected
and travelling individuals can spread the infection from region
to region. Only active adults are allowed to travel from one region
to another. In other words, we assumed that movements of less
active people, children, teenagers and elderly are negligible, so
that individuals of different regions may interact only if they
are active adults.

Finally the contact matrix has been defined as follows:

bpq
ij ¼

bij if p ¼ q

0 if p – q and i or j

are not active adults
bijM

pq if p – q and i; j are both
active adults

8>>>>>><
>>>>>>:

ð2Þ

where

Mpq ¼ e dFpq þ TpqNq

P
r

TprNr

0
@

1
A ð3Þ

represents the proportion of effective contacts between adults of
different regions compared to adults of the same region.

Note that the formula implies that people travel to the neigh-
bouring regions proportionately to their population sizes, which
is an usual assumption [19] lacking precise data. F and T are the
transportation matrices defined before, while e and d represent
the weights of short and long distance travels, respectively. e has
been calibrated according to the Italian National Statistical Office
(ISTAT) data, according to which approximately 2% of people travel
daily to neighbouring regions. No data are available on long dis-
tance travelling between regions, hence d will be used as a free
parameter that measures the importance of long distance vs. short
distance travel.



Table 1
Average number of contacts between age groups in households (top table) and in
schools/workplaces (at the bottom) estimated as described in the main text. The
population is divided in six age classes: infants 0–2 years of age, children 3–14 years
of age, teenagers 15–18 years of age, young adults 19–39 years of age, adults 40–64
years of age and elderly aged 65 or more.

cf
ij 0–2 3–14 15–18 19–39 40–64 P 65

0–2 0.09 0.7 0.004 1.55 0.3 0
3–14 0.13 0.67 0.14 1 1 0.04
15–18 0.002 0.34 0.12 0.3 1.55 0.06
19–39 0.15 0.5 0.05 0.54 0.91 0.01
40–64 0.03 0.24 0.19 0.43 0.59 0.17
P 65 0 0.03 0.01 0.01 0.3 0.37

cs
ij 0–2 3–14 15–18 19–39 40–64 P 65

0–2 1.9 0 0 0.6 0.19 0.8
3–14 0 19 0 1.43 1.43 0
15–18 0 0 15.8 1.37 1.37 0
19–39 0 0 0 2.83 1.83 0
40–64 0 0 0 1.59 1.59 0
P 65 0.12 0 0 0 0 0

Table 2
Proportion of more and less active individuals in each age class.

Age class More active (%) Less active (%)

0–2 25 75
3–14 35 65
15–18 50 50
19–39 50 50
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As for the within region contacts between age/activity classes,
we have followed the basic idea developed in individual based
models [13,15–17,30]: influenza transmission may occur in conse-
quence of a contact with an infectious at home, at school/work or
because of an occasional contact within the community. We have
further assumed that these three components of the risk of infec-
tion have the same magnitude:

bij ¼ #f cf
ij þ #

scs
ij þ #

oco
ij ð4Þ

with
X

j

#f cf
ij �

X
j

#scs
ij �

X
j

#oco
ij ð5Þ

where cf
ij; c

s
ij; c

o
ij represent the average number of contacts that an

individual of class i has with an individual of class j, respectively,
at home, at school/work, or in other circumstances and #f ; #s; #o

represent the probabilities that these contacts result in successful
transmission of the infection.

To estimate the average number of contacts cf
ij and cs

ij we have
used the 2001 Italian census data1 on the composition of house-
holds, school attendance and employment condition. Namely, in or-
der to evaluate cf

ij we have estimated from the data the mean
number of family members that an individual in class i has in class
j; since data in this exact form are not available, our estimate uses
a guess on the age difference between siblings, but the resulting ma-
trix is rather robust to this choice. To estimate cs

ij we have used the
data on school attendance and employment rate in the various clas-
ses; school contact rates are computed assuming an average of 20
schoolmates of the same age group (the number is reduced to 10
for daycare centres) and also some fringe contacts between students
and teachers and between grandparents and grandchildren who do
not attend daycare. Finally, work contact rates are distributed be-
tween age classes in relation to their contribution to the work–force;
given the usual estimate of a lower force of infection in older age
classes for air-borne transmitted childhood diseases such as measles
or chickenpox [33,34], their total strength is taken as one-sixth of
the weight of school contacts. The resulting matrices are given in Ta-
ble 1.

As for contacts within the community, we have assumed that
the probability #oco

ij of getting the infection from an individual of
class j occasionally met is proportional to the size Nj of class j, that
is #oco

ij � KNj, where K is the constant of proportionality that needs
to be estimated.
1 Available at: www.istat.it
Using (5), we have the following relations:

#s � #f

P
j

cf
ij

P
j

cs
ij

K � #f

P
j

cf
ij

P
j

Nj
; i; j ¼ 1; . . . ;m ð6Þ

where the bar represents the average value computed over all clas-
ses. These relations, together with the estimates of cf

ij; c
s
ij and the

data Nj, allow for the definition of the three components of bij once
we have fixed the free parameter #f .

We assume that the contact rates for the less active groups have
the same structure but are suitably reduced. Namely, we have a
reduction factor q if the contact is between a more active and a less
active individual and a reduction factor q=2 if the interaction is be-
tween two individuals with few social contacts, i.e.

biþm
2 ;j
¼ qbi;j bi;jþm

2
¼ qbi;j biþm

2 ;jþ
m
2
¼ q

2
bi;j; i; j ¼ 1 . . .

m
2

ð7Þ

(classes 1 to m
2 represent more active individuals, while classes m

2 þ 1
to m are the less active).

In summary, the calibration of the within region contacts de-
pends on two parameters. One ð#f Þ is related to virus transmissibil-
ity and the other ðqÞ reflects population heterogeneity: if q is close
to 1 there is little difference between the transmission rates of
more and less active individuals and so the level of heterogeneity
in the population is low, while, if q is close to 0, heterogeneity is
much higher and there is a sensible difference in virus transmis-
sion between individuals with different social behaviour.

2.1.1. Validation of the contact matrix
As explained above, our matrix of contacts has been estimated

using available data from the 2001 census, integrated with a priori
assumptions that appeared reasonable. To verify the reliability of
our estimation procedure we have compared our matrix with the
matrix obtained from the results of a population-based survey on
contact patterns recently published [35]. The survey provides the
first quantitative information on contact patterns. We have used
the data in the form of a matrix, deriving the average number cij

of contacts that a person in age class i has daily with individuals
in class j. As done with our contact matrix, we have calibrated
these numbers introducing a probability # of being infected after
a contact with an infectious (corresponding to #f ; #s; #o, of (4))
and a reduction coefficient q (see (7)) that reduces the number
of contacts with less active people.

2.2. Organisation of simulations

Data from the Italian National Statistical Office (ISTAT) on spa-
tial and age distributions have been used to define the demo-
graphic structure of the population and to distribute the
individuals in age classes and regions. In each age class individuals
have been classified as more or less active, assuming that infants,
children and elderly tend to have few social contacts, while teenag-
ers and adults are more active. The subdivision (see Table 2) is
40–64 50 50
65 and older 25 75

http://www.istat.it
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somehow arbitrary but its effect on the overall heterogeneity is
regulated by the parameter q, described above.

As an initial condition for the simulations we assume that the
population is completely susceptible to the wave of infection.
The epidemic is initialised introducing 5 infected individuals in
Italy. The infected are all young adults and, when spatial structure
is included, they are placed in the Lazio region, where the intercon-
tinental airport of Rome is located. Our choice is motivated by the
likely assumption that the virus would initially come from abroad.
We did not find any substantial difference in the simulated epi-
demics locating the initially infected individuals in other regions
with international airports.

As for the values of the free parameters d; #f and q, a guideline
in the choice is the value of the basic reproductive ratio R0, the
average number of secondary cases produced by a single typical
infectious individual in a completely susceptible population. R0 is
defined, using the method of Diekmann and Heesterbeek, as the
dominant eigenvalue of the next generation matrix [36], that we
have computed through the contact matrix bpq

ij defined by (2).
Another indicator of an epidemic is the overall attack rate, i.e.

the fraction of the population eventually infected. In a homoge-
neous population this is completely determined by R0 [36], while,
in a heterogeneous population, to a fixed value of R0 may corre-
spond different attack rates. In fact, while the value of R0 depends
mainly on the contact rates of the more active classes [37], the le-
vel of heterogeneity determines the attack rate. With high hetero-
geneity less active people have very few contacts and will be
unlikely to get infected and spread the infection, thus the global at-
tack rate will be low. On the other hand, with low heterogeneity,
less active people have contact rates similar to those of more active
people and will be more likely to get infected and infect others,
thus incrementing the attack rate. Therefore, fixed R0, the more
heterogeneous the population, the lower will be the global attack
rate.

This is shown in Fig. 1, using #f and q as parameters. The figure
displays the contour plots for R0 and the attack rate AR as a func-
tion of the two parameters, showing that the attack rate increases
rapidly with q (that is decreasing heterogeneity), while R0 depends
more significantly on #f . The figure has been obtained fixing e ¼ 0,
that is ignoring the spatial component; very similar curves are ob-
tained for e ¼ 0:02 (the reference value) and any fixed value of
e – 0.

Estimates of R0 for past pandemics vary widely, ranging from
1.5 to 3.9 [12,21,38–42]. We have generated the baseline epidemic
choosing R0 ¼ 1:8, that is considered a realistic estimate for the ba-
sic reproductive ratio of a possible pandemic [25,12]. Then we have
Fig. 1. Contour plots of the reproduction ratio R0 and the global attack rate AR, as a
function of the parameters #f and q with e ¼ 0.
considered a milder and a more severe scenario, characterised by
R0 ¼ 1:6 and 2.0, respectively.

The clinical reported attack rate for past pandemics is about 31–
33% [16,21], but much higher estimates have been obtained for the
serological attack rates [21]. We have considered an attack rate of
35% (corresponding to high heterogeneity) in the baseline scenario,
and then we have increased it up to 50% (corresponding to low
heterogeneity).

The free parameter d has been chosen making different hypothe-
sis on long-distance travelling. We have assumed that short distance
movements count as much as, twice as much (baseline scenario) or
four times as much as long distance travelling. This gives, respec-
tively, d ¼ 3:4� 10�3; d ¼ 1:7� 10�3 and d ¼ 8:5� 10�4.

In order to obtain the given values of R0 and the attack rate, we
have calibrated the parameters #f and q, realising contour plots
similar to those shown in Fig. 1, but for the correct values of e
and d. In the baseline scenario, with d ¼ 1:7� 10�3; R0 ¼ 1:8 and
AR ¼ 35%, we have set #f ¼ 0:445 and q ¼ 0:17, the point where
the contours R0 ¼ 1:8 and AR ¼ 35% intersect.

2.3. The stochastic component

As well known, deterministic compartmental models like (1)
are not appropriate to correctly describe the dynamics of an epi-
demic, especially during the initial and final phases, when a small
number of individuals is infected and stochastic factors play a ma-
jor role. Moreover, in our model we have a large number of com-
partments that may not be all directly connected, so that even
when the overall number of infective individuals is large, the ex-
pected number of infectives may be very low in several compart-
ments. It is thus conceivable that stochastic factors have a
relevant influence not only in the very initial and final phases.

To adequately model such phenomena we have introduced a
stochastic component that regulates the spread of the infection
when the number of infectives is sufficiently low. Namely, at each
time step of the differential equation solver, if the total number of
exposed and infected in a region/class (Ep

i or Ip
i ) predicted by Model

(1) was below a threshold value (we chose a value of 10), it was re-
placed by a Poisson variable with that mean. This is a simplified
and computationally inexpensive way to include stochasticity into
the model, that has been successfully considered in epidemic mod-
elling applications [43–47].

To investigate the reliability of this approximation we have
compared some of the results with those obtained with a full sto-
chastic model, simulated as a continuous-time Markov chain with
the rates specified consistently with (1), using the Gillespie algo-
rithm [48].
3. Numerical simulations and results

Our baseline scenario has been simulated taking
R0 ¼ 1:8; AR ¼ 35% and d ¼ 1:7� 10�3 and including the stochas-
tic component, implemented using the Poisson approximation de-
scribed above. This implies that all simulations are different, with
some of them dying out spontaneously after a handful of cases (the
distinction between these and substantial epidemics is always
quite clear-cut). Simulations that give rise to an epidemic are
rather different from each other, mainly in the length of the initial
phase, before a considerable number of cases builds up (see left pa-
nel of Fig. 2). The epidemic peak is reached, on average, after 16.6
weeks, with a 90% confidence interval given by (15.1–18.7). To de-
fine a ‘‘typical epidemic curve”, we superimposed the peaks of all
epidemic curves (for the simulations giving rise to an epidemic)
and computed the average incidence at each time relative to the
peak time. The resulting curve has then been shifted to locate
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Fig. 2. Epidemic curves obtained simulating an uncontrolled influenza pandemic in Italy. The figure shows some of the simulations obtained implementing the Poisson
stochastic approximation (on the left) and (on the right) the average epidemic curve (solid line) with 90% confidence curves (dashed lines) calculated superimposing all the
curves, as described in the text.
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the peak at the average peak time, to produce the curve defined as
‘‘the typical simulation”. Analogously we have calculated 90% con-
fidence curves, computing at each relative time 90% confidence
intervals for the predicted incidence (see right panel of Fig. 2).

3.1. Spatial structure

We have analysed the importance of including a spatial struc-
ture in the model running the model with and without the spatial
structure, for the scenario with R0 ¼ 1:8 and AR ¼ 35%. In the mod-
el without spatial structure we have divided the Italian population
in 12 age/activity classes and used the matrix b described through
(4) as contact matrix; in the spatial model we have used (2) as con-
tact matrix, including the movement matrix (3) that depends on
the two parameters, e and d. e was fixed at 0.02, while d (represent-
ing the relative weight of long vs. short distance travelling) has
been varied as discussed above.

Fig. 3 shows the results obtained running, for each scenario, 200
stochastic simulations with the Poisson stochastic component de-
scribed above. This figure shows some of the predicted curves (left
panel) and ‘‘the typical simulation” (right panel) with and without
spatial structure, for different values of d.

Even if the cumulative incidence and the duration of the epi-
demic are approximatively the same with and without spatial
structure, we can see how, if no spatial structure is included, the
epidemic is much quicker and reaches its peak 3–4 weeks in ad-
vance with a somewhat higher incidence during the peak week.
On the other hand, results do not seem to be significantly related
to the relative weight of long distance travelling. Single simula-
tions are overlapping and the typical epidemic curve is only
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Fig. 3. The effect of the inclusion of the spatial structure on the predicted dynamics of
epidemic curve (on the right) obtained with the model without spatial structure (black lin
distance travels (d ¼ 8:5� 10�4 red line, d ¼ 1:7� 10�3 green line, d ¼ 3:4� 10�3 blue l
slightly delayed when long distance movements are weighted less,
as one can expect.

3.2. Stochastic component

In order to assess the role of stochasticity, we have compared a
deterministic, a full stochastic model and our stochastic correction
of the deterministic model, considering the baseline scenario
(R0 ¼ 1:8; AR ¼ 35% and d ¼ 1:7� 10�3).

Fig. 4 shows the results obtained, displaying some of the simu-
lations run and the typical epidemic curves. We can see that, on
average, there is only a small difference between the three models.
The typical stochastic curves are very similar to each other and are
only slightly different from the deterministic one: the epidemic
peak is slightly delayed (16.1, 16.4 and 16.6 weeks for the deter-
ministic, full stochastic and Poisson model, respectively) and
slightly lower (63.5, 59.6 and 59.5 cases per 1000 people) than in
the deterministic model. The global attack rate is the same in the
three cases (35%).

Instead, looking at the single stochastic simulations, we observe
a considerable variability in the length of the initial phase, before
the exponential growth of the epidemic. This variability represents
the main difference between stochastic and deterministic
dynamics.

A summary of the results obtained with the two stochastic
models is given in Table 3. The results are fairly similar, at least
for the simulations that give rise to an epidemic. In both cases
the epidemic peak occurs during the 16th week with a maximum
incidence of approximately 60 cases per 1000 individuals. The var-
iability in the initial phase, defined as the time needed to have 5
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Fig. 4. Comparison between the epidemic curves predicted by a deterministic and a stochastic model. The figure shows three simulations (on the left) and the average
epidemic curve (on the right) obtained with a deterministic model (solid line), a full stochastic model (dashed line) and our model (dotted line), where stochasticity is
included through the Poisson approximation. The three simulations shown have been chosen so as to match the first part of the epidemic curves.

Table 3
Comparison of the two stochastic models. Numbers in parentheses indicate the
empirical 90% confidence interval.

Markov process Poisson
approximation

Time to infection peak 16.4 (15.3–18.3) 16.6 (15.1–18.7)
Prevalence at peak 59.6 (55.5–62.0) 59.5 (54.9–62.0)
Time to 5‰ prevalence 10.9 (9.7–12.7) 11.0 (9.6–13.2)
Frequency of early extinctions 11% 43.5%
CPU time for 10 simulations with

large epidemic
2500 s 16 s
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infected per 1000 individuals, is also very similar with 90% confi-
dence intervals of 9.6–13.2 vs. 9.7–12.7 with the two models. On
the other hand, there is a big difference in the probability of spon-
taneous extinction: 11% with the full stochastic model (Markov
process) and 43.5% with the Poisson approximation, which clearly
is an overestimation.

The time required to run the simulations is also very different
for the two stochastic approaches: in our simulations, with about
57 million individuals, divided in 240 groups, the model with the
Poisson approximation is much faster, requiring 16 vs. 2500 CPU-
seconds (32 s vs. 54 min real time) on a Intel(R) Pentium(R) 4
CPU 2.40 GHz for 10 simulations giving rise to a large epidemic.

3.3. Validation of the contact matrix

To compare our matrix, defined using available data from cen-
sus integrated with reasonable assumptions, with the contact ma-
trix estimated through the results of the population survey
conducted by Mossong et al. [35], we have set the values of the
parameters in order to simulate our baseline scenario (R0 ¼ 1:8
and AR � 35%) and we have compared the epidemic curves pre-
dicted by the model with the two contact matrices.

The two transmission matrices for the more active classes (clas-
ses 1–6) are shown in Fig. 5a and b. There are small differences be-
tween the two matrices, the most relevant being in the
transmission rates between younger individuals (classes 1–3)
and adults (classes 4 and 5), which have been slightly overesti-
mated using census data. The structure of the survey-based matrix
is more diagonal than our matrix, but, on the whole, the two trans-
mission matrices are fairly similar.

The average epidemic curves, computed over 200 simulations
run using the two matrices, are shown in Fig. 5c and are almost
perfectly overlapping. The contact matrix estimated through the
survey certainly reflects more precisely the contact patterns in
the populations; nevertheless the results of our simulations seem
to be robust to small variations in the transmission matrix.
3.4. Possible pandemic scenarios

As explained before, in the baseline scenario the model has been
calibrated to have an R0 equal to 1.8 and an attack rate around 35%.
Nevertheless, since nobody can know in advance what the charac-
teristics of a future pandemic will be, it is necessary to analyse
other scenarios. The epidemic dynamics and intensity are regu-
lated through the value of the free parameters #f and q, that para-
meterise virus transmissibility and population heterogeneity (we
have seen that the free parameter d does not influence significantly
the dynamics). We have considered different combinations of the
two parameters that give rise to several possible pandemic scenar-
ios. In particular we have combined the parameters to obtain a ba-
sic reproductive ratio between 1.6 and 2.0 and an attack rate
between 35% and 50% (see Fig. 1).

Fig. 6 shows the typical epidemic curves obtained for the differ-
ent scenarios considered, where the typical simulation has been
computed as before superimposing all the curves and calculating
the average incidence at each time. Expected epidemic curves are
widely different, according to the values of the parameters.

As shown in Fig. 6 the initial growth rate is basically controlled
by the value of R0. This has to be expected, since there is a one-to-
one relation (though model-dependent) between the reproductive
ratio R0 and the growth rate in the exponential phase. Moreover,
when R0 is larger, the epidemic starts earlier, it reaches its peak
earlier with a higher peak incidence, and then dies off faster (the
typical bell shape is wider if R0 is lower).

On the other hand, for the same value of R0, a variety of epi-
demic curves are possible, varying in the height at the peak and
in the total attack rate, showing that the overall dynamics of an
epidemic cannot be summarised by the single parameter R0.

4. The simulation of control strategies

We have simulated the implementation of different control
measures, considering all the pandemic scenarios described above
and making different assumptions on measures efficacy.

We have considered strategies composed of one or more of the
three following interventions: (i) vaccination, (ii) antiviral prophy-
laxis and (iii) quarantine (i.e. social distancing measures, such as
the closure of schools, public offices and places of aggregation).

We have modelled the use of a vaccine effective 4 or 5 months
after the start of the epidemic (see [27] for details) and varied its
efficacy between 50% and 70% [15]. According to the simulated
vaccination policy the population is divided into four prioritised
categories: (i) personnel of health services and other essential ser-
vices, (ii) elderly aged 65 and older, (iii) children and teenagers
from 2 to 18 years old and (iv) healthy adults. We assume to
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Fig. 5. A comparison between our transmission matrix (4) (a), estimated using available census data, and the transmission matrix estimated using the data from the
population-based survey on contact patterns by Mossong et al. [35] (b). Cell ij corresponds to the transmission rate between class i and class j, for classes 1–6 (more active
individuals). Darker colors correspond to higher transmission rates and numerical values (days�1) are shown in the color-coded legend on the right side of each matrix.
Transmission in less active classes has the same structure, but is reduced, as described in the main text. (c) The epidemic dynamics predicted by model (1) using transmission
matrix (4) (dashed line) and the transmission matrix derived from the data published in [35] (solid line).
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Fig. 6. Some scenarios of diffusion of an influenza pandemic in Italy. Epidemic
curves obtained considering various combination of different hypothesis on virus
transmissibility and population heterogeneity.
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vaccinate all the categories starting from the first and that 2 weeks
are necessary to deliver vaccine to each category.

Quarantine measures consist in the closure of schools, public
offices and places of aggregation for 3, 4 and 8 weeks, respectively,
starting 4 weeks after the first national cases. We assume that
these measures would reduce the transmission rate within the
community of 30%, 50% or 70%, while the effect of antiviral prophy-
laxis is a reduction of the transmission rate in households by 27%,
50% or 75%.

4.1. Results

The differences between expected epidemic curves in the ab-
sence of intervention clearly affect the effectiveness of control
strategies.

A sample of results are shown in Fig. 7 and, as expected, the effi-
cacy of control measures is much higher for low values of the
reproductive ratio. For R0 ¼ 1:6 the attack rates can be reduced
to values as low as 6%, while, for R0 ¼ 2:0, the global attack rate re-
mains high (around 20%) also with the most successful strategy.

Interestingly, the effect of intervention seems to depend mostly
on the value of R0 and only marginally on the pandemic intensity,
measured through the global attack rate. This fact can be explained
observing Fig. 6 and noting that the start of the epidemic changes
significantly with R0, but only slightly when the attack rate in-
creases and R0 is kept constant. Since the effect of interventions
strongly depends on timing [27], this determines the main differ-
ences observed in their effectiveness. The comparison between
the case R0 ¼ 1:8; AR ¼ 50% and the case R0 ¼ 2:0; AR ¼ 42% is
especially insightful. The two epidemic curves reach a similar peak,
but differ in timing (the one with R0 ¼ 2:0 starts and reaches the
peak earlier) and also in the overall attack rate. Assuming that an
intervention strategy can be introduced at week 16, it is clear that
it would be much more effective when R0 ¼ 1:8 and AR ¼ 50% be-
cause, in the other case, the epidemic would already be in the



Fig. 7. Total attack rates for each combination of R0 and AR without control and with a selected sample of control measures. Control measures consist in social distancing
(with 50% efficacy) as described in the text, plus AVP (27% efficacy) and vaccination (70% efficacy) as indicated in the legend. A = high heterogeneity, corresponding to an
attack rate around 35% without intervention, B = medium heterogeneity, corresponding to an attack rate around 42% without intervention, C = low heterogeneity,
corresponding to an attack rate around 50% without intervention.
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declining phase. So, even if the epidemic with R0 ¼ 1:8 is more in-
tense (AR ¼ 50% vs. 42%), it could be contained more successfully
(compare in Fig. 7 the C panel with R0 ¼ 1:8 to the B panel with
R0 ¼ 2:0).

Another aspect that influences the evaluation of intervention
strategies is the assumed efficacy of the measures. Fig. 8a and b
shows the effect of varying the efficacy of quarantine and antiviral
prophylaxis; similar results have been obtained investigating the
variability of vaccination efficacy [27]. As expected, a higher effi-
cacy of the strategies increases the effectiveness of the interven-
tion. Interestingly, when the efficacy of antiviral prophylaxis or
quarantine is high the predicted epidemic has a longer tail, so that,
even if the incidence during the peak weak is much lower, the
reduction in the global attack rate is not as large.

The global attack rates for various intervention scenarios and
different levels of strategies efficacy are presented in Fig. 8c. Vacci-
nation plays a key role in pandemic containment (the combination
of quarantine and antiviral prophylaxis is completely unsuccessful
in reducing the attack rate, since they are simulated only as tempo-
rary measures) but it needs to be combined with other measures to
be effective. Differences in the efficacy of single measures some-
times alter the ranking of the different combinations of measures,
but under all assumptions the combination of all measures is the
most effective way to contain a pandemic.

5. Discussion

In our work we have discussed the details included in an SEIR
model built to simulate an influenza pandemic in Italy, investigat-
ing their importance and their influence on the simulated epidemic
curves.
The population has been structured according to the age and
spatial distribution of the individuals and a contact matrix has
been derived from census data. Although the matrix could be im-
proved if more detailed data were available, the results have pro-
ven to be robust to small variations in the transmission
coefficients and encouragingly similar to those obtained with a
contact matrix estimated from the survey-based contact patterns
recently published by Mossong et al. [35]. Survey data are available
for several European countries [35] but, for other countries not in-
cluded in the survey or in other situations, a contact matrix could
be obtained from census data, using the procedure described in
this work. The simulated epidemic curves have proven to be
reliable.

Another important result of our model is related to the intro-
duction of the stochastic component through a peculiar type of
Poisson approximation that is computationally very efficient. Sto-
chasticity is usually modelled as a Markov process [49] and simu-
lated using the Gillespie algorithm [48], which can become very
slow when the population is divided in many groups [50]. Our re-
sults show that our simple approach is sensibly faster and predicts
fairly similar epidemic curves.

The limitation of our Poisson approximation is related to the
overestimation of the probability of spontaneous extinction. This
could probably be easily corrected by using the Poisson approxi-
mation only for the number of new cases and not for the number
of infected individuals. However, the main interest in modelling
pandemic spread lies in predicting expected features of the epi-
demic curve and in evaluating control measures if an epidemic
starts, not in predicting the probability for an epidemic to start.

Our stochastic simulations of an influenza pandemic show (see
Table 3) that the length of the initial phase can vary significantly,
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as the overall shape of the epidemic curve (i.e. in the incidence at
the peak, that is more than 5% lower than in deterministic simula-
tions). This variability can play an important role in the simulation
of pandemic scenarios, and especially in the evaluation of possible
control measures.

On the other hand, the initial variability in epidemic take off
would be better assessed and probably less relevant if the national
model was embedded in a model of worldwide pandemic spread,
including infected individuals entering the country daily from
abroad and enhancing the diffusion of the virus during the initial
phase.

Embedding the model within a model of worldwide spread
could also help in evaluating the time lag between the identifica-
tion of the first cases in the world, the preparation of a pandemic
vaccine (that would presumably start right afterward [51]) and
the introduction of the virus in Italy. All these elements are crucial
for the effectiveness of vaccination [27].

An important aspect of the model is the spatial structure, based
on the Italian geography. The difference between the results ob-
tained with and without spatial structure are clearly due to the
way in which the 20 regions are connected when the spatial struc-
ture is included. Without spatial structure all individuals may have
a contact with every other individual, while, when the spatial
structure is included, contacts with individuals of a different region
(and not always all of them) are possible only between adults of
the more active subgroups. This slows significantly the initial
spread of the infection (see Fig. 3), has a minor effect on the peak
incidence (about 5% lower with spatial structure) and increases
slightly the length of the epidemic.

The observed difference in epidemic timing may influence the
evaluation of the effectiveness of possible control measures, as al-
ready noted. A correct assessment of the spatial transmission of the
infection is thus essential. Although it is clear that transmission is
more likely between individuals living in the same area, the
weights to be given to contacts at different distances can be ob-
tained only through accurate analysis of data on the spread of sim-
ilar infections, such as seasonal influenza. Moreover, the choice of
the optimal spatial structure in a patch model like ours could be
controversial: we have chosen the regional scale mainly because
of data availability, but Italian regions are very inhomogeneous
as for surface and population and may not reflect adequately
movements of individuals. Ciofi degli Atti et al. [19] chose a more
detailed structure, based on the 8101 municipalities, that are rea-
sonably homogeneous in surface, but extremely heterogeneous in
population (between few dozens and millions of individuals). Such
a scale would require many more data (or assumptions) on contact
patterns and a more relevant computational time, especially in the
stochastic version. Other groupings may reproduce better actual
contacts and infection spread; a systematic comparison of models
at different spatial scales could be helpful.

Depending on the parameter values, the simulated pandemic
scenarios can be rather different. From the point of view of evalu-
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ating interventions, the analysis show that a prompt intervention
would help to reduce the epidemic intensity, although the actual
impact of control measures would strongly depend on reproduc-
tive ratio R0 of the infection (see Fig. 7) and on the efficacy of each
control measure (Fig. 8a and b). In general, the combination of dif-
ferent control measures, if accurately planned, has synergistic ef-
fects and results in a sizable mitigation of the pandemic (Fig. 8c)
even in the most pessimistic scenario considered here.
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