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Abstract

The transmission and the persistence of tick-borne infections are strongly influenced by the densities and
the structure of host populations. By extending previous models and analysis, in this paper we analyse how
the persistence of ticks and pathogens, is affected by the dynamics of tick populations, and by their host
densities. The effect of host densities on infection persistence is explored through the analysis and simula-
tion of a series of models that include different assumptions on tick–host dynamics and consider different
routes of infection transmission. Ticks are assumed to feed on two types of host species which vary in their
reservoir competence. Too low densities of competent hosts (i.e., hosts where transmission can occur) do
not sustain the infection cycle, while too high densities of incompetent hosts may dilute the competent hosts
so much to make infection persistence impossible. A dilution effect may occur also for competent hosts as a
consequence of reduced tick to host ratio; this is possible only if the regulation of tick populations is such
that tick density does not increase linearly with host densities.
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1. Introduction

Tick-borne zoonotic diseases constitute an important public health problem that has increased
over the past 20 years as people increasingly spend leisure time near woodlands and countryside.
These infections are characterized by an intricate set of ecological and epidemiological relation-
ships between pathogen, tick vector, vertebrate hosts, and humans, which largely determine their
spatial and temporal dynamics.

Several authors have used mathematical models to investigate the effects of various biotic and
abiotic factors on temporal and spatial population dynamics of ticks [1,2].

Detailed models based on information about local climate conditions in a specific tick-infested
area have been developed with this specific aim. By using meteorological data from satellites,
accurate up-to-date information about microclimate conditions from one month to the next
can be obtained, and these might be correlated with what is happening to the tick population.

For instance a consistent correlation has been found between how rapidly the temperature
cools in the autumn and the feeding patterns of the larval and nymphal stages of the tick the fol-
lowing year; this factor is considered to be very important in the transmission of tick-borne
encephalitis [3].

Many studies, mainly in the United States, have focussed instead on the effect of biotic factors
such as biodiversity, in terms of species richness, on the persistence of Lyme disease [4–6]. As ticks
can feed on many different animals and every species has a unique reservoir competence, or ability
to carry and transmit the pathogen, the presence of different food sources might affect disease inci-
dences. For Lyme disease in the US, where the most important reservoir is the white-footed
mouse, it has been shown that the greater the relative abundance of non-mouse hosts, the lower
the percentage of ticks infected with Borrelia [5]. This suggests that the preservation of vertebrate
biodiversity and community composition can reduce the incidence of Lyme disease [6].

An important advance in our understanding of how tick-borne pathogens persist in natural sys-
tems, was the discovery of non-systemic transmission of infection through co-feeding ticks on
some host species [7]; this kind of transmission is considered to be crucial for the persistence of
some infections, notably the tick-borne encephalitis virus complex [8].

On the other hand, trans-ovarial transmission, from adult ticks to offspring, may occur but its
frequency is very low and its contribution to transmission is generally thought to be negligible [9].

Because of the special features of tick dynamics, over the recent years several mathematical
models have been devoted to either tick population dynamics (e.g. [10–13]), or tick-borne infec-
tions [14–18].

A basic concept in epidemic theory is the reproduction number, R0, defined in [19] as the spec-
tral radius of the next-generation matrix, that specifies the expected number of cases in the next
generation of infections given the distribution of infectious individuals in the present generation.
In most models, the epidemics can persist only if R0 > 1. Sometimes, other threshold quantities S
are derived studying the Jacobian matrix at the infection-free steady state; this will be unstable
(and the epidemic will persist) only if S > 1. Such quantities have the same threshold behaviour
of R0, even though they do not have the same biological interpretation [20].

Norman et al. [17] computed a threshold value for tick-borne infections and showed the so-
called dilution effect: when two alternative hosts exist for ticks (e.g. mice and deer), only one of
which is competent for transmission (mice in the case of Lyme diseases), an increase in the density
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of the incompetent host (deer in this example) may cause pathogen extinction. Qualitatively sim-
ilar results have been obtained in computer-based models [21,22].

Foppa [23] has suggested a method to estimate R0 for TBE (or better an upper bound for R0)
from easily empirically observation on the distributions of ticks and hosts.

In a previous paper [24], we have extended the model of [17] by allowing also for non-systemic
transmission and extended feeding periods, and computed threshold values for pathogen persis-
tence in such cases. Here, we build on that analysis, choosing to consider the feeding period,
by explicitly modelling the questing and feeding phases of ticks; we explore in greater detail the
dilution effect, showing that it is theoretically possible that R0 drops below 1 at high densities
of the competent hosts too. Indeed, some recent results [25] show that the prevalence of tick-borne
encephalitis (TBE) may be negatively correlated also with the density of the host species consid-
ered more competent for infection transmission (Apodemus flavicollis).

We analyse how the structure of density-dependence in tick demography, and the various trans-
mission routes, affect the occurrence of the dilution effect.

Using the persistence thresholds and parameter estimates obtained from the literature, we are
also able to assess the potential role of trans-ovarial and co-feeding transmission in the persistence
of TBE infections.
2. Tick population dynamics

The life cycle of ixodid ticks includes three post-embryonic developmental stages: larva (L),
nymph (N) and adult (A). Each stage can be subdivided in turn according to the phases of activity:
‘questing’, in which the unfed tick seeks a host and ‘feeding’, in which the attached tick feeds, be-
comes engorged and drops off. After dropping off their hosts, ticks go through a period of devel-
opment, after which they emerge as questing ticks at the next stage (or eggs hatch, if the feeding
ticks are adult females).

Ticks are found on many vertebrate hosts; usually adults have a more restricted host range than
larvae and nymphs [26]. Nevertheless, the generally accepted view is that, at least in Europe and
Eastern US, the dynamics of ticks and tick-borne diseases (e.g. Lyme disease and TBE) depends
largely on two classes of hosts: small rodents such as mice and voles, and larger mammals such as
ungulates [2,27]. The former class, which will be indicated in the following model as H1, is the
most common host species for immature stages of ticks (larvae and nymphs) while adults are gen-
erally found on medium-sized and large mammals (H2); among them, deer are the most
important.

Under these assumptions, we build a simple model for the dynamics of tick populations, assum-
ing that host populations are fixed at given densities H1 and H2. The dynamics is described
through a continuous model, thus disregarding seasonality, as generally done in models for
tick-borne infections (but see [23] and [28]).

Differently from other models for tick-borne infections, we divide ticks at each stage into quest-
ing and feeding as in [12]. On the other hand, we do not consider the trans-stadial development
stage, thus assuming that stage transitions are instantaneous. Developmental stages would act as a
delay, that might influence the dynamical properties of a system, but not its equilibria, which are
the focus of the present paper.
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2.1. The basic model for tick demography

We start by considering the model for tick dynamics only, without considering any infection;
this will then be the foundation for the transmission models. The variables of the model are
LQ, NQ and AQ (the densities of questing larvae, nymphs and adults, respectively) and LF, NF

and AF (the density of the same stages in the feeding phase). Encounters between questing ticks
and hosts of either class are governed by mass-action; i.e. the corresponding encounter rate is giv-
en by the product ðbN

1 H 1 þ bN
2 H 2ÞN Q, in the case of questing nymphs, and similarly for the other

stages. A tick–host encounter results in the transition of the tick to the feeding stage. Questing
larvae, nymphs and adults die respectively at rate dL, dN and dA. Mortality in the feeding period,
which lasts on average 1/r days, is neglected. The parameters mL (mN) represent the probability of
moulting success for larvae (nymphs) after feeding. In practice, mL and mN may depend on the
host species [29] but here, for the sake of simplicity, we stick to the case of a single parameter.

The final parameter needed is the production of larvae per feeding adult tick, aT. If all param-
eters were constant, the tick population would grow or decrease exponentially, in contrast to the
usual observations of fairly constant population densities [30]. Hence, following [14,17], we as-
sume that larva production aT is a decreasing function of tick density T, hence aT(T); in the next
Section, we discuss more thoroughly the issue of density-dependence in tick demography.

The resulting equations that describe tick population dynamics are the following:
Plea
Mat
_LQ ¼ rAaT ðT ÞAF � dLLQ � ðbL
1H 1 þ bL

2H 2ÞLQ

_LF ¼ ðbL
1H 1 þ bL

2H 2ÞLQ � rLLF

_NQ ¼ mLrLLF � dN N Q � ðbN
1 H 1 þ bN

2 H 2ÞNQ

_NF ¼ ðbN
1 H 1 þ bN

2 H 2ÞNQ � rN N F

_AQ ¼ mNrN N F � dAAQ � ðbA
1 H 1 þ bA

2 H 2ÞAQ

_AF ¼ ðbA
1 H 1 þ bA

2 H 2ÞAQ � rAAF :

ð1Þ
Simple matrix algebra (Appendix A.2) shows that the tick-free equilibrium of (1) is stable if
q(K) < 1, where
K ¼

0 0 0 0 0 rAaT ð0Þ
bL

dLþbL 0 0 0 0 0

0 mL 0 0 0 0

0 0 bN

dNþbN 0 0 0

0 0 0 mN 0 0

0 0 0 0 bA

dAþbA 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð2Þ
with bL ¼ bL
1H 1 þ bL

2H 2, bN ¼ bN
1 H 1 þ bN

2 H 2 and bA ¼ bA
1 H 1 þ bA

2 H 2.

It is easy to see that qðKÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Sticks

0
6

q
with
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Plea
Mat
Sticks
0 ¼ mLbL

dL þ bL �
mNbN

dN þ bN �
bA

dA þ bA aT ð0Þ: ð3Þ
In order to intepret (3), let
sL ¼ mLbL

dL þ bL ; sN ¼ mNbN

dN þ bN ; bAðT Þ ¼ bA

dA þ bA aT ðT Þ; ð4Þ
where sL [sN] is the probability that a questing larva [nymph] feeds and moults into a questing
nymph [adult], while bA(T) is the average number of larvae expected to be produced by a questing
adult, when T is ticks’ population density. Hence, Sticks

0 ¼ sL � sN � bAð0Þ represents the expected
number of larvae produced by a larva, when density-dependent effects are absent [24].

When Sticks
0 > 1, we show below that there exists a unique positive equilibrium T* of system (1).

When no confusion arises, we will denote by T* both the six-dimensional equilibrium of (1), and
the total tick density T* = L* + N* + A*. Setting the RHS of (1) equal to 0, we see that the total
densities of each stage L*, N*, and A* satisfy the relations:
L� ¼ ð1þ cL
1H 1 þ cL

2H 2ÞL�Q ¼
cL

1H 1 þ cL
2H 2

1þ cL
1H 1 þ cL

2H 2

L�F ð5Þ
with cL
j ¼ bL

j =r
L, j = 1, 2, and analogously for the other stages. Moreover, we have
N � ¼ mLbL

1þ cL
1H 1 þ cL

2H 2

� 1þ cN
1 H 1 þ cN

2 H 2

dN þ bN L�

A� ¼ mNbN

1þ cN
1 H 1 þ cN

2 H 2

� 1þ cA
1 H 1 þ cA

2 H 2

dA þ bA N �

L� ¼ aT ðT �ÞbA

1þ cA
1 H 1 þ cA

2 H 2

� 1þ cL
1H 1 þ cL

2H 2

dL þ bL A�:

ð6Þ
Finally, inserting the first equation of (6) in the second and then the second in the third, it is not
difficult to see that T* must satisfy
sL � sN � bAðT �Þ ¼ aT ðT �Þ
aT ð0Þ

Sticks
0 ¼ 1: ð7Þ
Since aT(Æ) has been assumed to be a decreasing function, it is clear that the system has a unique
positive equilibrium if and only if Sticks

0 > 1.
Almost the same equations for the equilibrium and for Sticks

0 have been found in [24], using time-
scales arguments. The slight difference between the two expressions arises from the assumption in
[24] that questing and feeding ticks have the same death rate, while here we neglect the death rate
of feeding ticks.

We cannot prove the stability of T*, if Sticks
0 > 1, as was done in [24]; in this case the system is

six-dimensional, and the computations become awkward. However, we investigated the stability
numerically, using parameter values in the range considered to be reasonable for Ixodes ricinus in
northern Italy (see Section 4) and did not find any parameter set that makes the equilibrium
unstable. Then, when computing threshold conditions for pathogen persistence, we will take
for granted that the positive equilibrium T* is stable for system (1).
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2.2. Modelling density-dependence in tick population dynamics

As discussed above, in case of no density-dependence in tick demography, there would be an
exponential growth or decrease of tick population. Instead, ixodid ticks are typified by remark-
ably constant population sizes, varying annually by considerably less than one order of magnitude
[30].

Population regulation of ticks about fairly constant equilibrium level can be brought only if
the rates of one or more of the demographic processes vary with population density. Death
rates must increase, or birth rates must decrease with increasing density [30]. In [17] and [24]
it is assumed that density-dependence occurs through a reduction of the birth rate of ticks:
the production of larvae per feeding adult tick, aT(T), was assumed to be a linear decreasing
function of the total number of ticks present in the system. A consequence of this assumption
is that at high densities ticks would have a negative birth rate; in order to avoid this incongru-
ity, here we assume aT(T) to be a negative exponential function of the total number of ticks, as
follows:
Plea
Mat
aT ðT Þ ¼ rT exp f�sT Tg; ð8Þ

where rT is the maximum egg production of adult ticks (taking sex ratio into account), while sT

measures the strength of density-dependence.
Density-dependence in ticks may occur also in other parts of the tick cycle such as moulting

probability, the probability that an immature feeding tick survives and develops to the next stage
[1]. One can then assume that the moulting probabilities mL and mN to depend on the number of
ticks, T, similarly to (8):
mLðT Þ ¼ rL exp f�sLTg; mNðT Þ ¼ rN exp f�sN Tg: ð9Þ

Few data exist in the literature about the exact nature of population regulation in ticks;

however, it is generally thought that the regulation arises mainly through host immunity rath-
er than because of tick predation or parasitism [30]. Indeed, hosts acquire resistance to tick
feeding as a result of repeated infestation [31,32], as observed both in tick-cattle and tick-ro-
dent interaction [33,34]. Several effects of acquired resistance in hosts have been observed, such
as the reduced engorgement weight of ticks, increased duration of feeding, decreased number
of ova, reduced viability of these ova and blocked moulting and death of engorging ticks
[31,32,35]. The decrease of the average blood meal might affect tick fecundity, as it varies
directly with meal size [36]. This empirical evidence indicates that the production of larvae
from adult females, aT, should depend on the immune status of the host on which the adult
fed. A model that takes into account individual tick loads and immune histories would be very
complex (see [37]); using a mean field approach, one could assume that adult fecundity de-
pends on past history of average tick load; simplifying further, we let adult fecundity depend
on the instantaneous average tick load, rather than on total tick density as done in (8). Using
again a negative exponential model, the alternative form for the production of larvae per feed-
ing adult is:
aT ðT Þ ¼ rT exp �sT
T

uH 1 þ vH 2

� �
; ð10Þ
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where the two parameters u and v weigh the contributions of the two host species to tick popu-
lation dynamics. If this type of density-dependence occurs in moulting probabilities, as in (9),
mL(T) and mN(T) assume the following form:
Fig. 1
the le
bN

2 ¼
rA = .

Plea
Mat
mLðT Þ ¼ rL exp �sL
T

uH 1 þ vH 2

� �
; mNðT Þ ¼ rN exp �sN

T
uH 1 þ vH 2

� �
: ð11Þ
2.3. Effect of host densities on tick equilibrium densities

What is the effect of host densities on tick dynamics? When hosts are abundant, ticks are more
likely to find a host, hence there is an increase in the rates at which ticks progress from stage to
stage and reproduce. However, if, as assumed in (8), ticks’ reproductive success decreases with tick
density, equilibrium density will saturate with increasing host density. The left panel of Fig. 1
shows a numerical example. It can be seen, and it is a general feature under assumption (8), that
the equilibrium density of questing larvae depends in a non-monotonous way on the density of
hosts 1 (the ones on which larvae mainly feed). A biological interpretation of this result is present-
ed in Section 5.

When we let instead tick fecundity depend on average tick load (aT(T) given by (10)), the ef-
fect of host densities on tick equilibrium density changes substantially, as shown in the right
panel of Fig. 1. In this case, the equilibrium density of ticks increases almost linearly with host
density without reaching a plateau. Since tick fecundity is regulated by ticks-to-hosts ratio, we
can say that ticks’ carrying capacity increases linearly with host densities. In the right panel of
Fig. 1, one can see that the equilibrium density of larvae too goes on increasing with host den-
sity H1 (the same occurs for H2), as well as the equilibrium densities of the other tick stages (not
shown).
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. Effect of H1 on tick equilibrium densities (total ticks and questing larvae) using different choices for aT(T): on
ft, aT(T) is given by (8), on the right by (10). Parameter values are: bL

1 ¼ :015, bN
1 ¼ :0005, bA

1 ¼ 0, bL
2=.05,

:03, bA
2 ¼ :13, dL = .0365, dN = .015 dA = .00625, rT=2000, sT = .001, mL = mN = .15, rL = .28, rN = .22,

12, H2 = .06, u = .04, v = .4.
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Finally, we studied the model with density-dependence in the moulting success for the various
tick stages, (9) or (11). The results are not shown, since the resulting figures are very similar to
those in Fig.1, according to the choice of (9) (left panel) or (11) (right panel).

An important theoretical difference is that, using (9) or (11), it is possible to find examples of
mN(Æ) and mL(Æ) such that multiple positive equilibria occur, as well as cases where a unique equi-
librium is unstable (see [28] for proof of this in a discrete – continuous setting). However, these
examples have only been found for unusual parameter values; using realistic parameter values,
it appears that the positive equilibrium is always unique and stable.
3. Models for the dynamic of tick-borne infections

As discussed in the Introduction, different tick-borne infections have different competent hosts,
and different infection pathways. Here we consider two cases, that model infections of public
health relevance and allow for computations of biologically interpretable threshold quantities
for infection persistence.

We start, in Section 3.1, considering the case where systemic transmission takes place only in
one host species (competent hosts), H1, including also vertical (trans-ovarial) transmission in ticks
from infected adults to eggs/larvae.

Afterwards, in Section 3.2, we introduce the non-systemic route of transmission through co-
feeding ticks; both transmission routes take place in the same host species, H1.

Other cases, for instance an infection to which both types of hosts are competent, like Anaplas-
ma, could be handled similarly.

3.1. Systemic transmission in H1

We start by considering the case, in which the infection is only transmitted systemically between
ticks and one single competent host species (assumed to be H1) at blood meals. Precisely, we will
assume that a tick feeding on an infected host (of type 1) has probability pz

1 (z = L, N or A) of
becoming infected, and a host fed on by an infected tick has probability qz

1 of becoming infected.
For simplicity, both infections will be assumed to occur exactly at the beginning of the blood
meal, so that the infection rate of hosts will be proportional to the contact rate of questing infec-
tive ticks (of the various stages) with susceptible hosts, while ticks will become infected (in a feed-
ing stage) at a rate proportional to the contact rate of susceptible questing ticks (at that stage)
with infective hosts. The model considered does not contain an incubation period for the infec-
tion; however, the assumption about infection transmission makes it impossible that, as a host
becomes infected, it infects the ticks already feeding on it; therefore, effectively a sort of incuba-
tion period is implicit in the model.

The model equations are built on the structure of (1), dividing all tick stages (questing or feed-
ing larvae, nymphs and adults) between susceptibles and infected (denoted by a superscript i or s).
Furthermore, hosts of class 1 will be divided into susceptible, infective and immunes (s, i or r) and
their densities will change following infections and recoveries; moreover, since we allow for an
infection causing mortality in the hosts, host demography needs to be modelled explicitly, and
it is then necessary to assume density-dependence in the hosts too, for simplicity operating only
Please cite this article in press as: R. Rosà, A. Pugliese, Effects of tick population dynamics and host densities ...,
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through the fertility term a1(H1). Finally, trans-ovarial transmission from adult female ticks to
eggs is also included introducing the parameter e that measures the proportion of infected eggs
laid by an infected female adult. Using these assumptions, it is not difficult to modify system
(1) and obtain the following system:
Plea
Mat
_Li
Q ¼ erAaT ðT ÞAi

F � dLLi
Q � ðb

L
1H 1 þ bL

2H 2ÞLi
Q

_Ls
Q ¼ ð1� eÞrAaT ðT ÞAi

F þ rAaT ðT ÞAs
F � dLLs

Q � ðb
L
1H 1 þ bL

2H 2ÞLs
Q

_Li
F ¼ ðb

L
1H 1 þ bL

2H 2ÞLi
Q þ pL

1b
L
1H i

1Ls
Q � rLLi

F

_Ls
F ¼ ðb

L
1ðH 1 � pL

1H i
1Þ þ bL

2H 2ÞLs
Q � rLLs

F

_N i
Q ¼ mLrLLi

F � dN N i
Q � ðb

N
1 H 1 þ bN

2 H 2ÞN i
Q

_N s
Q ¼ mLrLLs

F � dN N s
Q � ðb

N
1 H 1 þ bN

2 H 2ÞN s
Q

_N i
F ¼ ðb

N
1 H 1 þ bN

2 H 2ÞN i
Q þ pN

1 bN
1 H i

1Ns
Q � rN N i

F

_N s
F ¼ ðb

N
1 ðH 1 � pN

1 H i
1Þ þ bN

2 H 2ÞNs
Q � rN N s

F

_Ai
Q ¼ mNrN N i

F � dAAi
Q � ðb

A
1 H 1 þ bA

2 H 2ÞAi
Q

_As
Q ¼ mNrN N s

F � dAAs
Q � ðb

A
1 H 1 þ bA

2 H 2ÞAs
Q

_Ai
F ¼ ðb

A
1 H 1 þ bA

2 H 2ÞAi
Q þ pA

1b
A
1 H i

1As
Q � rAAi

F

_As
F ¼ ðb

A
1 ðH 1 � pA

1 H i
1Þ þ bA

2 H 2ÞAs
Q � rAAs

F

_H s
1 ¼ a1ðH 1ÞH 1 � d1H s

1 � ðqL
1b

L
1Li

Q þ qN
1 bN

1 Ni
Q þ qA

1b
A
1 Ai

QÞH s
1

_H i
1 ¼ ðqL

1b
L
1Li

Q þ qN
1 bN

1 N i
Q þ qA

1b
A
1 Ai

QÞH s
1 � ðd1 þ c1 þ a1ÞH i

1

_H r
1 ¼ c1H i

1 � d1Hr
1:

ð12Þ
System (12) has an infection-free equilibrium, corresponding to the equilibrium T* of system (1).
We will denote it still by the name T*: at the equilibrium, H s

1 ¼ H �1 solution of a1(H1) = d1, while
all the susceptibles in the various tick stages are given by the corresponding values in (5) and (6),
and all the infective components (and H r

1) are equal to 0.
As shown in Appendix A.3, T* is stable if q(K) < 1 where
K ¼

0 0 ebAðT �Þ pAðT �Þ
sL 0 0 pL

0 sN 0 pN

qL qN qA 0

0
BBBB@

1
CCCCA: ð13Þ
In (13), sL, sN and bA are given in (4), while the entries
qL ¼ qL
1b

L
1H �1

dL þ bL ; qN ¼ qN
1 bN

1 H �1
dN þ bN ; qA ¼ qA

1b
A
1 H �1

dA þ bA ; ð14Þ
represent the probability that an infected questing larva (or nymph or adult) infects a host.
Finally,
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Plea
Mat
pL ¼
mLpL

1b
L
1L�Q

d1 þ c1 þ a1

; pN ¼
mN pN

1 bN
1 N �Q

d1 þ c1 þ a1

; pAðT Þ ¼
eaT ðT ÞpA

1b
A
1 A�Q

d1 þ c1 þ a1

; ð15Þ
represent the average number of infected questing nymphs [adults, larvae] produced by an infected
host over its infectious period, taking into account that vertical transmission is necessary for a
host to infect tick larvae, after being bitten by an adult.

Although the matrix K is obtained in Appendix A.3 using matrix algebra, it can be seen that it
can be considered the next-generation matrix [19], using as types-at-birth infected questing larvae
Li

Q, nymphs N i
Q, and adults Ai

Q, together with the infected competent hosts, H i
1. Hence, we may

write R0 = q(K).
In this case, we know no explicit expression for R0 = q(K); it is possible however to write the

following threshold quantity S0,
S0 ¼ Ssyst
0 þ Svert

0 þ e; ð16Þ

where
Ssyst
0 ¼ pL � qN þ pL � sN � qA þ pN � qA ð17Þ
and
Svert
0 ¼ pAðT �Þ qL þ sLqN þ sLsN qA

� �
þ pNebAðT �Þ qL þ sLqN

� �
þ pLsNebAðT �ÞqL: ð18Þ
Ssyst
0 represents the average number of hosts infected by an infected host going through systemic

transmission host-to-tick, and then tick-to-host. Analogously Svert
0 represents the average number

of hosts infected by an infected host going through a single trans-ovarial transmission. Finally, the
term e is the average number of infected larvae [nymphs, adults] produced by an infected larva
[nymph, adult] purely through vertical transmission.

The threshold S0 < 1 can be understood, since
S0 < 1 () Ssyst
0 þ Svert

0

1� e
< 1:
The fraction 1/(1 � e) represents the whole infected (through vertical transmission) progeny,

including itself, of an infected tick. Hence,
Ssyst

0
þSvert

0

1�e represents the average number of hosts infected
by an infected host going host-to-tick, then considering all ticks infected through vertical trans-
mission, and then tick-to-host.

Indeed, one can compute the quantity T1 (relatively to infected hosts) introduced by [20]. Mov-
ing the fourth row and column to first in (13), and making the necessary computations, one
obtains
T 1 ¼
Ssyst

0 þ Svert
0

1� e
: ð19Þ
Although R0, S0 and T1 are different quantities, they have the same threshold behaviour: R0 > 1 if
and only if S0 > 1 if and only if T1 > 1 [20].

Without transovarial transmission (e = 0), the threshold reduces to Ssyst
0 > 1. Essentially, the

same threshold for pathogen persistence has been found in the model studied in [24], as can be
seen using the relation (5) between L* and L�Q.
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Adult ticks do not usually feed on rodents (H1 in this case), so that it can be assumed bA
1 ¼ 0, so

that qA = pA(T*) = 0. Under this condition, the threshold simplifies to
Plea
Mat
S0 ¼ pL � qN þ ebAðT �Þ½pNðqL þ sLqNÞ þ pLsN qL� > 1: ð20Þ
3.2. Systemic and non-systemic transmission in H1

We consider here a further route of infection, usually called non-systemic infection, which takes
place horizontally between co-feeding ticks. This means that a susceptible feeding tick can get the
infection not only from an infected host but also from other infected feeding ticks that are co-feed-
ing on the same host [8]. We restrict here to the empirically relevant case where both systemic and
non-systemic infections can occur only in hosts of class 1. In addition, to keep under control the
computations, we do not include trans-ovarial transmission and we assume that adult ticks feed
only on hosts 2.

These assumptions simplify considerably the mathematics, and appear adequate to describe the
transmission of Borrelia burgdorferi or TBEv, assuming hosts 1 to be small rodents, and hosts 2 to
be mainly deer [2]. In fact, successful TBE virus transmission, between co-feeding ticks, seems to
be strongly species specific. Empirical investigations have found wild rodents, in particular Apode-
mus spp., to be the most competent transmission hosts, whilst investigations of other species (e.g.
deer, hedgehog, pheasant) have found no evidence of virus transmission [38–40].

In the model, non-systemic transmission is described by the parameters kLN (transmission from
infective nymphs to larvae) and kNN (transmission from infective nymphs to susceptible nymphs).
We do not consider co-feeding transmission in the adult tick stages since we assume no adult ticks
feed on H1. Precisely, kLN (and similarly kNN) represents the probability that a larva gets infected,
provided it starts feeding on a host on which an infective nymph is also feeding. This probability
includes the probability for a larva to be in the same co-feeding group, the probability that the
infection is then transmitted and the probability of the infection being maintained trans-stadially;
estimates for all these probabilities, in the case of TBE virus, may be found in the literature
[7,39,40].

Then the probability for a larva to get infected through non-systemic transmission, as it starts
feeding on a host of class 1, is given by
1� exp �kLN

N i
F 1

H s
1 þ H i

1 þ H r
1

( )
ð21Þ
where Ni
F 1
=H 1 represents the average nymph load over hosts of class 1, and we assumed indepen-

dence in the distribution of ticks over hosts. It is well known, however, that the distributions of
ticks on hosts are aggregated, and that there is a positive correlation between the distributions of
larvae and nymphs [8,41]. In [24], assuming that tick stages are distributed according to a negative
binomial distribution, and that qLN represents the correlation coefficient between larvae and
nymphs on hosts, we showed that (21) still holds with
kLN ¼ hLNð1þ qLN=
ffiffiffiffiffiffiffiffiffiffi
kLkN

p
Þ; ð22Þ
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where kL and kN are the aggregation parameters k of the negative binomial for larvae and
nymphs, respectively, while hLN is the probability that a larva gets infected, provided it starts feed-
ing on a host on which an infective nymph is already feeding. Analogously kNN can be written as
hNN(1 + 1/kN) (see [24]). Hence, we always use formula (21) for the probability that a larva that
starts feeding on a host of class 1 gets infected; biologically, kLN may be interpreted according to
(22).

Summing up, the rate at which larvae get infected non-systemically is given by
Plea
Mat
bL
1H 1LQ 1� exp �

kLN N i
F 1

H 1

( ) !
:

Note that in [24] the simpler expression bL
1LQkLN N i

F 1
had been used for the infection rate [always

remembering the relations (5)]. That expression is not feasible, since it yields infection probabil-
ities larger than 1 when the density of infected nymphs is high; however, the linearization at the
infection – free equilibrium is the same, so that the computation of R0 in [24] is correct.

For this model, in order to avoid unrealistic transmission routes, it becomes necessary to dis-
tinguish between ticks that have been infected but are not yet infectious (they will be denoted as
exposed), and ticks that are infectious, i.e. capable to transmit the infection to a host or to co-feed-
ing ticks. Precisely, we assume that ticks that get infected during a blood meal become ‘exposed’
and they will become infectious only after moulting [26].

Hence, we will divide feeding larvae into susceptible (Ls
F ) and exposed (Le

F ) (i.e., those being
infected in that blood meal), that will moult into susceptible (N s

Q) and infectious (Ni
Q) questing

nymphs; feeding nymphs will be susceptible, infectious (those infected as feeding larvae) or
exposed (those being infected in that blood meal). In addition, we need to distinguish between
infected nymphs feeding on host 1 (N i

F 1
) and host 2 (N i

F 2
) as we assume that co-feeding trans-

mission can occur only on host 1.
Using the variables and assumptions described above, we obtain, taking into account that

ticks feeding on infectious hosts may get infected by both transmission routes, the following
system:
_LQ ¼ rAaT ðT ÞAF � dLLQ � ðbL
1H 1 þ bL

2H 2ÞLQ

_Le
F ¼ bL

1LQH i
1 1� ð1� pL

1Þ exp �
kLN N i

F 1

H 1

( ) !
þ bL

1LQðH s
1 þ H r

1Þ 1� exp �
kLN Ni

F 1

H 1

( ) !

� rLLe
F

_Ls
F ¼ bL

1 H s
1 þ H r

1 þ ð1� pL
1ÞHi

1

� �
exp �

kLN N i
F 1

H 1

( )
þ bL

2H 2

" #
LQ � rLLs

F

_Ni
Q ¼ mLrLLe

F � dN N i
Q � ðb

N
1 H 1 þ bN

2 H 2ÞNi
Q

_Ns
Q ¼ mLrLLs

F � dN N s
Q � ðb

N
1 H 1 þ bN

2 H 2ÞNs
Q

_Ni
F 1
¼ bN

1 H 1Ni
Q � rN N i

F 1

_Ni
F 2
¼ bN

2 H 2Ni
Q � rN N i

F 2
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Plea
Mat
_N e
F ¼ bN

1 Ns
QH i

1 1� ð1� pN
1 Þ exp �

kNN N i
F 1

H 1

( ) !
þ bN

1 N s
QðH s

1 þ H r
1Þ 1� exp �

kNN N i
F 1

H 1

( ) !

� rN N e
F

_N s
F ¼ bN

1 H s
1 þ H r

1 þ ð1� pN
1 ÞH i

1

� �
exp �

kNN N i
F 1

H 1

( )
þ bN

2 H 2

" #
N s

Q � rN Ns
F

_Ai
Q ¼ mNrNðN i

F 1
þ Ni

F 2
þ N e

F Þ � dAAi
Q � bA

2 H 2Ai
Q

_As
Q ¼ mNrN N s

F � dAAs
Q � bA

2 H 2As
Q

_AF ¼ bA
2 H 2ðAi

Q þ As
QÞ � rAAF

_H s
1 ¼ a1ðH 1ÞH 1 � d1H s

1 � qN
1 bN

1 N i
QHs

1

_H i
1 ¼ qN

1 bN
1 Ni

QH s
1 � ðd1 þ c1 þ a1ÞHi

1

_H r
1 ¼ c1H i

1 � d1Hr
1:

ð23Þ

Although the previous system seems utterly complicated, simple matrix algebra (Appendix A.4)

shows that the condition for the stability of the infection-free equilibrium of (23) is that the spec-
tral radius q(K) < 1 with
K ¼

0 0
bL

1pL
1
L�Q

d1þc1þa1

bL
1L�QkLN

rN

mL 0 0 0

0 qN 0 0

0
bN

1 H�
1

dNþbN 0 0

0
BBBBB@

1
CCCCCA: ð24Þ
As its third and fourth columns, and rows, are proportional, one eigenvalues of K in (24) is 0;
the others are the three cubic roots of
S0 ¼ pL � qN þ mLbN
1 H �1

dN þ bN �
kLNbL

1L�Q
rN

: ð25Þ
Then, the condition for the stability of the infection-free equilibrium can be written as S0 < 1.
Note that K might be considered the next generation matrix, using as types-at-birth Le

F , N i
Q, H i

1

and N i
F 1

; we would then obtain R0 ¼ qðKÞ ¼
ffiffiffiffiffi
S0

3
p

.
On the other hand, if (perhaps more closely to the concept of next-generation matrix developed

in [19]) one chooses as types-at-births N i
Q and H i

1, the next-generation matrix becomes a 2 · 2 ma-
trix, that, after some thoughts, can be written as
K ¼
bN

1 H�
1

dNþbN

kLN bL
1L�Q

rN mL pL

qN 0

 !
: ð26Þ
Then R0 = q(K) can be found, solving a second-degree equation, while S0 corresponds to T1, as
defined in [20].
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The expression (25) for S0 can be read as the expected number of ‘exposed’ larvae produced (in
a wholly susceptible population) by a newly infected (hence ‘exposed’) larva over its infectious
period: the first term pL ÆqN computes those infected through the systemic route (recall in fact
the definitions (14) and (15), with the relative interpretations); the second term computes those

infected through the non-systemic route:
mLbN

1 H�
1

dNþbN is the probability of surviving moulting, and find-

ing a host 1,
bL

1L�Q
rN is the average number of larvae that start feeding on that host while the index tick

is feeding and kLN is the probability of infecting each co-feeding larva.

4. Effect of host densities on infection persistence

Parameter values used for simulations are based on estimates obtained in Trentino (northern
Italy) for the following species: the most abundant tick (Ixodes ricinus), the most abundant rodent
host, yellow-necked mouse (A. flavicollis), named H1, and the main ungulate host, roe deer
(Capreolus capreolus), named H2. Empirical data were used to estimate tick and host densities
and the encounter rates between hosts and ticks in different stages [42]. Parameter values concern-
ing tick biology (such as mortality, fertility, duration of feeding, moulting probabilities) were de-
rived from previously published studies [11,29,43]. The probabilities of infection of ticks and hosts
were calibrated to tick-borne encephalitis virus (TBEv), and estimated from the literature; for sys-
temic and non-systemic transmission from [7,8,39,40] while for transovarial transmission from
[44]. Time is measured in days while density in hectare�1.

We start by considering the case of systemic transmission only in hosts 1 (rodents) with
bA

1 ¼ 0, so that S0 is given by (20). Fig. 2 shows the effect of H1 on S0 for different levels of
trans-ovarial transmission (measured by the parameter e), using density-dependence aT(T) given
by (8) in the left panel and (10) in the right panel. Both panels show that a minimum density of
rodents (H1) and a large enough probability of trans-ovarial transmission (e) are needed for the
pathogen to persist (S0 > 1). The shape of the curves in the left panel of Fig. 2 show a dilution
effect due to rodents: when rodent density is too high, S0 always goes below 1 so that the infec-
tion dies out. This does not happen in the right panel of the figure where S0 always grows with
rodent density.

The same qualitative pattern is observed in Fig. 3 where non-systemic transmission is consid-
ered. The figure shows the effect of H1 on S0 in (25) for different levels of transmission through co-
feeding ticks (measured by the parameter kLN) and the two types of density-dependence. It is
interesting to note that with our parameter set, calibrated on TBE virus in Trentino, the infection
cannot persist (S0 < 1) when only systemic transmission is considered (curves with e=0 in Fig. 2,
and kLN=0 in Fig. 3), in accordance with the general view of that infection [8].

In order to assess the relative importance of trans-ovarial and non-systemic transmission
routes, we compare the two figures. Using reasonable values of rodent density (below 20–30 heads
per hectare) the probability of trans-ovarial transmission (e) needed to make the virus persists
(S0 > 1) must be higher than 10 per cent; this value is one order of magnitude higher than reported
estimates [44]. Conversely, the minimum value needed for non-systemic transmission (k) is be-
tween 0.3 and 0.4, which is comparable with values reported in literature [39].

The relative densities of both hosts that allow the pathogen to persist can be shown through the
persistence-extinction boundary in the plane H1 � H2 [17]; in that plane we plot the curve S0 = 1
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that will divide the region (of host densities) where the infection persists from the region in which
the infection goes extinct. Focussing on the effect of roe deer density (H2), that are assumed to be
incompetent to transmission, one can see in both panels (differing in the assumptions about the
density-dependent tick fertility aT(T)) of Fig. 4, that H2 has a double effect on pathogen persis-
tence: the pathogen persists when H2 density is in a range above a minimum density, needed
for tick persistence, and below a maximum. Above the latter density, the incompetent hosts pre-
vent the transmission of the disease, by acting as a pathogen sink that looses more pathogens from
the system than the competent rodent hosts may produce, and let S0 drop below unity (Fig. 4).
Concerning the effect of rodents on pathogen persistence, in Fig. 4 we can see (as already observed
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in Fig. 3) that the effect of rodents depends on the structure of density-dependence. A negative
effect of high rodent density is shown in the left panel of Fig. 4 that uses aT(T) in (8) while it does
not occur in the right panel with aT(T) in (10) .
5. Discussion

In this paper, we have assessed, with the help of different mathematical models, how changes in
the relative densities of the main host species can influence the persistence of tick-borne infections.
The models considered differ in the assumptions about tick population dynamics, and the different
infection pathways occurring between hosts and ticks.

The tool used to investigate the persistence of pathogens has been the computation, using ma-
trix algebra, of the threshold for the stability of the infection-free equilibrium for the models con-
sidered. For some of the cases considered, the threshold had been already computed, but the
present paper has improved the realism, by considering in detail the transition between tick stages
and their phases of activity. In other cases, such as that with trans-ovarial transmission, the pres-
ent paper shows a new explicit formula for computing the persistence threshold.

As widely known, a threshold for the stability of the infection-free equilibrium can generally be
written as R0 < 1, where R0 is the basic reproduction number, defined in [19] as the spectral radius
of the next-generation matrix. While we acknowledge the great theoretical importance and the
heuristic value of the concept of R0, we deem that sometimes other threshold quantities (that
we denoted here as S0) can be more practical, because explicit computation of eigenvalues of large
matrices is unlikely and because there may be ambiguities in identifying the correct next-genera-
tion matrix (see for instance (24) and (26)). For this reason, we aimed at obtaining, in the various
cases, threshold quantities S0 that were simple to write and interpret. Often, the value obtained
coincides with the quantity Tl, defined in [20], the relevant quantity when, in a pathogen multi-
host system, attention is focussed on some hosts only.
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Apart from these technical issues, the focus of this paper is on the effect of host densities on the
persistence of tick-borne pathogens. We found that the effect depends strongly on the way tick
population is regulated; indeed, the conclusions differ significantly in case (8) or (10) is used to
model density-dependent tick fecundity.

Using (8), overall tick density saturates with increasing host density, while equilibrium larval
density actually decreases when rodent (H1) density increases beyond a minimum (left panel of
Fig. 1); on the other hand, using (10), overall tick density increases about linearly with increasing
host density, while larval density increases more slowly (right panel of Fig. 1).

The decrease of larval density using (8) can be explained as follows: at large host densities, the
equilibrium total number of ticks is almost independent of host densities; hence, the rate at which
new larvae are recruited is almost constant. On the other hand, the rate at which larvae feed (and
thus leave the stage) is a strongly increasing function of the density of H1, since hosts will be easier
to find. An almost constant input together with an increasing output results in a decreasing equi-
librium density.

There exist very little information on what mainly regulates tick populations in the field. Several
studies demonstrate that hosts’ immune status strongly affects tick survival and fecundity, and, as
discussed above, this indirect regulation may better be modelled through the function (10) rather
than through (8).

Some indirect evidence about the mechanisms of tick demography may be found by comparing
tick densities in systems that are ecologically similar but with different host densities. Kirby et al.
[45] report a significant increase in tick burden of red grouse over a period of 20 years in which
deer density appears to have increased. Allan et al. [46] have instead monitored tick densities in
forest fragments of different size with the smaller fragments having higher mice densities; they
found that questing nymph density decreases significantly with fragment area (thus increases with
mice density), but questing larvae density does not differ among fragments of different sizes. Over-
all, it appears to be a result intermediate between that predicted through (8) and that predicted
through (10) (left and right panels of Fig. 1).

The influence of host densities on infection persistence, under the two assumptions (8) or (10),
was already discussed in Section 4 and can be seen in Fig. 4. When host densities are too low for
ticks to persist, no tick-borne infection can persist: this explains the lower and left boundaries of
the persistence regions in Fig. 4. One can also see a negative effect of high densities of non-com-
petent hosts (the upper boundaries in Fig. 4); this can be explained on the basis of ‘wasted’ tick
bites [14]. The possibility of a dilution effect on the transmission of tick-borne infections caused by
non-competent hosts had already been found theoretically [17,18] and seems to be confirmed in [6]
on the detailed study on Lyme disease in North-Eastern United States where the effect of host
diversity and community composition on disease risk was examined.

A new result arising from this paper is that the dilution effect might occur at high density of
competent hosts too. The effect is the same with or without non-systemic transmission; indeed,
the expressions (20) (without trans-ovarial transmission) and (25) have exactly the same qualita-
tive dependence on the densities H1 and H2, differing only in the quantitative values.

This dilution effect strongly depends on the type of regulation of tick population; indeed, using
(8), tick (and especially larval) density does not increase much with increasing H1 (left panel of
Fig. 1), so that tick-per-host ratio will strongly decrease with increasing H1. Thus, when hosts
are abundant, each host will have the opportunity to infect only a few larvae; although each
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infected larva will then have a high probability of finding, as nymph, a host, the overall effect is to
decrease the reproduction number below 1, as shown by the left panel of Fig. 4. For aT(T) as in
(10), the number of ticks per rodent does not decrease significantly for increasing values of rodent
density, and then generally the reproduction number does not go below 1 at high densities of H1

(right panel of Fig. 4).
Since the exact nature of density-dependence in tick demographic parameters is largely un-

known, better information on tick demography would be needed, before being able to conclude
whether this second dilution effect is relevant in natural systems. It has to be remarked that,
recently, an inverse density-dependence between competent mice density, tick loads and preva-
lence of tick-borne encephalitis has been recorded by [25].

The quantitative results shown in Figs. 2 and 3 show that the tick-borne encephalitis virus
would not be able to persist in many areas, for instance in Trentino, without trans-ovarial or
co-feeding transmission; indeed, many authors [2,8] argue that tick-borne encephalitis is mainly
transmitted through co-feeding ticks. Our quantitative analysis seems to support this view, since
for R0 to be larger than 1, trans-ovarial transmission should be about one order of magnitude
higher than current estimates [44], while a probability of transmission via co-feeding around
the values measured in laboratory experiments [39] would suffice for persistence.

Foppa [23] too discusses the mechanisms that allow for the persistence of TBE. His approach is
to find an empirical estimate for R0 for TBEv, assuming only systemic transmission; his expression
(2) for R0 is, if monthly variations are neglected, exactly pL Æ qN in our notation (14) and (15), like
(20). His estimates for qN and pL differ slightly from ours, because Foppa implicitly assumes
qN

1 ¼ pL
1 ¼ 1 (probability 1 of getting infected upon encounter with the virus), and has somewhat

different rules about which larval ticks get infected, upon contact with an infectious host. Overall,
his estimates and confidence intervals for R0 are generally below 1, with point estimates of 0.66 or
0.91, according to the site. Hence, he supports the view that, to explain the persistence of TBEv,
other competent hosts must be present.

Our estimate for R0 with only systemic transmission is around 0.15, depending on host density
(see Fig. 2 with e = 0). Considering that we use qN

1 ¼ pL
1 ¼ 0:5, and that his procedure for estimat-

ing a is actually an over-estimate, the two estimates seem rather similar. In the present paper, we
have shown that co-feeding transmission at a reasonable rate seems to be enough to explain the
persistence of TBEv [8]. Certainly, considering the seasonality, as in [23], could improve the com-
putation of persistence thresholds.

Indeed, as discussed in the Introduction, seasonality has definitely an important role in tick-
transmitted infections; in particular, for co-feeding transmission, uninfected larvae must feed
alongside infected nymphs; hence coincidental timing of emergence is crucial for infection persis-
tence. These effects are not considered in the present model setting, except for the fact that the
equations (22) for non-systemic transmission contain, as a parameter, the correlation coefficient
qNL between nymphs and larvae. If qNL is positive, as often empirically observed [8,41], the repro-
ductive number will be increased. On the other hand, without coincidental feeding, qNL would be
negative, and the reproductive number would be decreased.

Although the estimate for R0 will certainly depend on the seasonal patterns of tick (and host)
populations, we believe that the effect of host densities on the persistence of tick-borne infections
would be qualitatively similar in constant and seasonal environments. Indeed, a dilution effect
with increasing densities of competent hosts has been found also in a model with discrete growing
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R. Rosà, A. Pugliese / Mathematical Biosciences xxx (2006) xxx–xxx 19

ARTICLE IN PRESS
seasons [28]. Studying the issue in an equilibrium setting allows for clearer and simpler conclu-
sions. A more complex situation would arise with seasonality coupled with multi-annual fluctua-
tions of host (and tick) populations, as seems to be the case in Trentino [47]; it is difficult to predict
the effects, without an explicit modelling investigation.

An important aspect of tick populations are the heterogeneities in tick–host interactions; these
are indirectly present in our models, through the aggregation indices, kN and kL, that appear in
equation (22) to compute the probability of non-systemic infection transmission. Aggregation of
ticks on few hosts would be relevant also for systemic transmission, if the same hosts always tend
to be fed on by ticks, hence would be more likely than the population average infected by tick-
borne infections. It is not clear to us whether this kind of heterogeneities (apparently usual in
tick–host interactions [47]) would simply increase the values of R0 computed in this paper, or would
also change the qualitative effects discussed. Probably, for a reliable answer, it would be helpful to
develop individual-based models where static and dynamic (for instance, because of age, social sta-
tus, or immune histories) heterogeneities can be modelled and monitored. The present computa-
tions of R0 constitute anyway a background against which to compare more detailed models.
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Appendix A. Local stability of equilibria

A.1. Two useful tools

Many Jacobian matrices (or parts of them) that determine the stability of the equilibria of the
systems considered in the text can be written in the form J = T � D where T is an irriducible non-
negative matrix, and D is a positive diagonal matrix. For such matrices Diekmann and Heester-
beek [19] show the following property:

Lemma 1. Let J = T � D where T is an irriducible non-negative matrix, and D is a positive diagonal
matrix. Then
Plea
Mat
sðJÞ > ½<�0 () qðTD�1Þ > ½<�1; ð27Þ

where s(J) is the maximum of the real part of the eigenvalues of J, and q(TD�1), the spectral radius of
TD�1, is the maximum of the moduli of the eigenvalues of TD�1.

Since the (local) stability of an equilibrium is generally determined by the sign of s(J), the pre-
vious lemma yields a criterion for determining the stability.
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When applying the previous result to some of the cases analysed in the text, it turns out that the
dimension of the matrix TD�1 is relatively large, so that computation of its spectral radius is awk-
ward. In some cases, it is possible to reduce the dimensionality of the problem, applying the
following

Lemma 2. Let A be a non-negative irreducible matrix such that
Plea
Mat
A ¼
0 0 M

Q 0 0

B P 0

0
B@

1
CA ð28Þ
where M, Q, B and P represent submatrices of arbitrary dimension, while 0 represent 0-matrices of
appropriate dimension. Then
qðAÞ > ½<�1() qðKÞ > ½<�1 with K ¼
MB MP

Q 0

� �
: ð29Þ
Proof. Let R be the spectral radius of A, and let v be a corresponding eigenvector, which can be

chosen to be positive. Setting v ¼
v1

v2

v3

0
@

1
A with vi of appropriate dimension, the identity A v = R v

can be written, using (28), as
Mv3 ¼ Rv1

Qv1 ¼ Rv2

Bv1 þ Pv2 ¼ Rv3

8><
>:
Using the first equation in the third one multiplied by M, we can rewrite the third and second
equation as
MBv1 þMPv2 ¼ R2v1

Qv1 ¼ Rv2

(
ð30Þ
Now if R < 1, we have from (30), using R2 < R,
K
v1

v2

� �
6 R

v1

v2

� �
:

This implies ([48], Theorem 2.1.11) that q(K) 6 R < 1.
On the other hand, if R > 1, we have, using R2 > R,
K
v1

v2

 !
P R

v1

v2

 !
:

This implies ([48], Theorem 2.1.11) that q(K) P R > 1.
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We have then proved the thesis.

A.2. Stability of tick-free equilibrium

System (1) has a tick-free equilibrium LQ = LF = NQ = NF = AQ = AF = 0. The Jacobian J,
obtained linearizing (1) at the tick-free equilibrium, can be split in the form J = T � D where T
is the non-negative matrix:
Plea
Mat
T ¼

0 0 0 0 0 rAaT ð0Þ
bL 0 0 0 0 0

0 mLrL 0 0 0 0

0 0 bN 0 0 0

0 0 0 mNrN 0 0

0 0 0 0 bA 0

0
BBBBBBBB@

1
CCCCCCCCA
; ð31Þ
and D is the positive diagonal matrix:
D ¼ diag

dL þ bL

rL

dN þ bN

rN

dA þ bA

rA

0
BBBBBBBB@

1
CCCCCCCCA
: ð32Þ
TD�1 is exactly the matrix K in (2) (see the text) and its eigenvalues are the six sixth roots of Sticks
0

in (3). Because of Lemma 1, the stability condition for the tick-free equilibrium is that the spectral
radius of TD�1 is less than 1, so that it can be stated as Sticks

0 < 1.

A.3. Stability of infection-free equilibrium with only systemic transmission

We wish to study the stability of T* relatively to system (12). Before computing its Jacobian, it
is useful to choose a suitable order of the components; we choose the order:
Li
Q;N

i
Q;A

i
Q;H

i
1; L

i
F ;N

i
F ;A

i
F ;H

r
1;H

s
1;L

s
Q;L

s
F ;N

s
Q;N

s
F ;A

s
Q;A

s
F

This ordering yields a nice simplification of the Jacobian matrix that assumes the form:
A1 0 0

B1 A2 0

B2 B3 J �

0
B@

1
CA ð33Þ
where A1 and A2 will be written down below, J* is a 6 · 6 matrix and Bi are matrices of the appro-
priate dimensions. Since the Jacobian is block-triangular, its eigenvalues are the eigenvalues of A1,
A2 and J*. J* is the Jacobian of (1) at T*; by assumption (see the text), all its eigenvalues have
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negative real part. Hence, in order to study the stability of T* we need only to look at the eigen-
values of A1 and A2:
Plea
Mat
A1 ¼

�ðdL þ bLÞ 0 0 0 0 0 erAaT ðT �Þ
0 �ðdN þ bNÞ 0 0 mLrL 0 0

0 0 �ðdA þ bAÞ 0 0 mNrN 0

qL
1b

L
1H �1 qN

1 bN
1 H �1 qA

1b
A
1 H �1 �ðd1 þ c1 þ a1Þ 0 0 0

bL 0 0 pL
1b

L
1L�Q �rL 0 0

0 bN 0 pN
1 bN

1 N �Q 0 �rN 0

0 0 bA pA
1b

A
1 A�Q 0 0 �rA

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

A2 ¼
�d1 0

a01ðH �1ÞH �1 þ a1ðH �1Þ a01ðH �1ÞH �1 þ a1ðH �1Þ � d1

� �
:

A2 is a triangular matrix; hence, its eigenvalues are the elements on the diagonal, all of which are
negative, since a1(Æ) is decreasing and at equilibrium a1ðH �1Þ ¼ d1. Hence, we see that the equilib-
rium T* is exponentially asymptotically stable if and only if the eigenvalues of A1 have negative
real part.

A1 = T1 � D1 with T1 non-negative and D1 a positive diagonal matrix; hence from Lemma 1,
we look at the spectral radius of T 1D�1

1 . We note that T 1D�1
1 can be written in the form (28) with
M ¼
0 0 erAaT ðT �Þ

mL 0 0

0 mN 0

0
B@

1
CA Q ¼ qL qN qAð Þ

B ¼

bL

dLþbL 0 0

0 bN

dNþbN 0

0 0 bA

dAþbA

0
BBBB@

1
CCCCA P ¼

pL
1
bL

1L�Q
d1þc1þa1

pN
1

bN
1 N�Q

d1þc1þa1

pA
1
bA

1 A�Q
d1þc1þa1

0
BBBBB@

1
CCCCCA:

� �

Hence, we can apply Lemma 2 and compute the spectral radius of the matrix K ¼ MB MP

Q 0
that is (13) (see the text).

Letting G(k) be the characteristic polynomial of K, it is easy to see that
G(k) = k4 � ak2 � bk � c with a, b and c positive; from the signs of the coefficients, one can con-
clude that G has a unique positive root. Since K is non-negative, q(K) is the largest positive root of
G(k); hence q(K) < [>]1 if and only G(1) > [<]0; the condition G(1) < 0 is exactly S0 > 1 with S0 in
(16).

A.4. Both systemic and non-systemic infection

When also non-systemic infection on H1 is considered, we compute the Jacobian using the fol-
lowing order of the components:
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Plea
Mat
Le
F ;N

i
Q;H

i
1;N

i
F 1

N i
F 2
;N e

F ;A
i
Q;H

r
1;H

s
1; LQ; Ls

F ;N
s
Q;N

s
F ;A

s
Q;AF :
The Jacobian of (23) can be written in the same form of (33) where all the sub-matrices are the
same except for A1 and A2, that in this case are the following 4 · 4 matrices:
A1 ¼

�rL 0 pL
1b

L
1L�Q bL

1kLN L�Q
mLrL �ðdN þ bNÞ 0 0

0 qN
1 bN

1 H �1 �ðd1 þ c1 þ a1Þ 0

0 bN
1 H �1 0 �rN

0
BBBB@

1
CCCCA:

A2 ¼

�rN 0 0 0

0 �rN 0 0

mNrN mNrN �ðdA þ bAH 2Þ 0

0 0 0 �d1

0
BBB@

1
CCCA:
As in the previous case, A2 is a triangular matrix with all negative elements on the diagonal. Thus,
we study the matrix A1 = T1 � D1, where D1 is a diagonal positive matrix and T1 is a non-negative
matrix. The matrix K ¼ T 1D�1

1 is (24) (see the text). Because of Lemma 1, the stability condition
for the infection-free equilibrium is q(TD�1), i.e. S0 < 1, as shown in the text.
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