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Abstract

Some models are presented for the dynamics of a host population with two parasite species. 
The models differ in two main aspects: whether they include direct competition among 
parasites and whether the analysis is based on some approximation and which one. If the 

analysis is not constrained by a priori assumptions about parasite distributions, it is found that 
species coexistence is very unlikely without some kind of direct competition among parasites; 
on the other hand, coexistence generally occurs when inter‑specific competition is lower than 
intra‑specific, similarly to standard theory for free‑living species. If hosts differ in their predis‑
position to infection, but not in an identical way towards the two parasite species, then species 
coexistence becomes feasible even if inter‑specific competition is as strong as intra‑specific; in this 
case, coexistence becomes easier as the variance in predisposition increases. These models do not 
yield universal predictions for patterns of parasite distributions; an analysis of the mechanisms 
of interaction in each specific system is necessary for that.

Introduction
Models for host‑macroparasite interaction have a relatively long history, starting from the 

pioneering work of Kostizin1 and with the two seminal papers by Anderson and May2 making a 
strong impact also on the empirical research.3,4 On the other hand, very few authors have studied 
models with several species of parasites, despite the fact that parasite communities are routinely 
found and examined in empirical research. This is presumably due to the much higher complexity 
of the resulting mathematical models (see below) and the difficulties in extending to multi‑species 
the approach (approximation via the negative binomial assumption) that has been so fruitful in 
the analysis of single species models.

None the less, several interesting models have been developed over the years. In this chapter, 
I will give a personal review of the subject, mainly focused on the subject of coexistence: what 
are the factors that lead to species coexistence? In so doing, I will quickly review some examples 
of dynamic models for two parasite species competition. In the final section, I briefly discuss 
whether these models give any general insight for parasite community ecology.

The models studied assume that parasites have only one host (i.e., they are monoxenic) and 
that infections occur through free‑living larvae. I believe that most results would apply to more 
complex systems as well.

Simple Models for Multispecies Parasite Dynamics
The main difficulty in modeling parasite dynamics is that one cannot simply divide the host 

population into infected and not, but one has to describe and predict the distribution of para‑
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2 Modelling Parasite Transmission and Control

sites among hosts, since the effect of parasites on hosts and on other parasite species depend on 
the number present in that host and perhaps also in features of their establishment. The typical 
approach used in one‑species macroparasite models has been to choose a priori that the parasite 
distribution is negative binomial, generally (following Anderson and May2) with fixed aggrega‑
tion parameter k, but also with a varying aggregation parameter5,6 and to then obtain an equation 
for the temporal dynamics of the mean parasite burden and, depending on the model, of other 
variables, such as host and/or free‑living larvae density.

To my knowledge, the first model on two macroparasite species interacting with one host 
species has been proposed by Dobson.7 His model followed this approach, assuming that each 
parasite species follows the negative binomial distribution with fixed aggregation parameter (k1 
and k2) and that the two distributions are independent; he then derived a model for the dynamics 
of the two parasite densities, assuming that the two species (and indeed all individual parasites) 
do not interact except in that each parasite contributes to the death of a host harboring both spe‑
cies. His main result is that there is an ample parameter region in which both species will coexist: 
the smaller the parameters ki are (meaning the more aggregated their distributions), the larger the 
coexistence region will be.

That model has been extended to communities of parasites,8 to allow for interference or fa‑
cilitation between parasites9,10 and to allow for logistic host growth.11 The result about parasite 
coexistence has proved to be robust with respect to all these changes.

Even two species identical in all parameters and differing in just one (for instance, the rate 
of egg production) can coexist; thus a completely inferior competitor (the one with a lower egg 
production) can survive. This result is actually rather puzzling and seems to be in contrast with all 
the theory of competitive exclusion.12 Competition theory does allow for several species to coexist 
on a single resource, for instance because of competitive balance shifts along a temporal cycle, or 
because of a colonization‑competition trade‑off in a metapopulation setting. In all cases, coexistence 
of competitors seems always to require the existence some trade‑off between traits.

The problem seems to lie in the a priori assumptions made. It will be addressed here by examin‑
ing conditions for coexistence in a model based only on explicit assumptions about the interaction 
mechanisms.

Structure and Parameters of Models
The models analyzed here concern the interaction of a host population with two species of 

monoxenic parasites with infections occur through free‑living larvae. Differently from the models 
outlined in the previous section, the model considered here does not contain a priori assumptions 
about parasite distributions and allows for many types of competition among parasites in the same 
host. The model is deterministic, with main variables the density of hosts carrying i 1‑parasites 
and j 2‑parasites, denoted as pij(t). Other authors13,14 start from a stochastic model, but then, to 
obtain analytic results, use some approximations leading to so‑called hybrid models15 similar to 
those discussed here.

The system of differential equations satisfied by pij(t) is rather cumbersome and can easily be 
obtained with some book‑keeping: it is written explicitly in the Appendix. It can be derived by 
noting that pij(t) may increase because some hosts that were carrying a different number of parasites 
switch to having exactly i 1‑parasites and j 2‑parasites (p00(t) increases also because of new births) 
and vice versa may decrease because some hosts carrying i 1‑parasites and j 2‑parasites switch to 
a different number of parasites (or die). Listing the possible transitions and their rates, as in the 
following Table 1, is then enough to specify the system:

In words, it is assumed here that adult parasites affect (additively) hosts’ mortality and (mul‑
tiplicatively) hosts’ fertility. Moreover, parasites within a host interact directly by increasing (ad‑
ditively) the mortalities (according to the matrix τ that differentiates intra‑species and inter‑species 
effects), decreasing (multiplicatively) the fertilities (according to the matrix r) and decreasing the 
probability of establishment of an infecting larva (through the matrix γ). Finally, new infections 
occur through encounters (at rate β) with free‑living larvae.
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3Modeling Multi‑Species Parasite Transmission
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4 Modelling Parasite Transmission and Control

The dynamics of free‑living larvae has to be specified; new ones are produced from adult para‑
sites (see Table 1), while they are removed through deaths (at rate δ1 [or δ2]) or encounters with 
hosts. One has then the differential equation

 

d
dt

L h p i r rij
i j

i j
1 1 11

1
121 1    (  –  ) (  –  )  – 

,

–
! ! "" #1 1 1 1L L N – 

 
(1)

and analogously for L2. A usual simplification2 is the assumption of fast dynamics of larvae, so that 
they are at quasi‑equilibrium with adult parasites. From (1), one obtains
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Finally, substituting (2) in the expression (Table 1) for the rate of adult parasite establishment, 
one obtains that, for a host carrying i 1‑parasites and j 2‑parasites, this is equal to
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(3)

In the transitions listed, several relevant phenomena of host‑parasite interactions have been 
neglected, such as nonlinear effects of parasite abundance on host mortality, facilitation of parasite 
establishment through parasite‑caused impairment of immune response,16 context‑dependent 
(through the sequence of infection by different species) parasite competition.17 The system is already 
complicated enough as it is and indeed it will be simplified to allow analysis; moreover, the main 
interest of the chapter lies in parasite competition rather than in facilitation.

The resulting system of differential equations is clearly very difficult to study, not least for 
its size: since the number of adult parasites in a host, i and j, can in principle be any number, it 
is a doubly infinite system; even if we restrict these numbers to a maximum, say 100, we would 
still have a system of 10,000 differential equations. The idea of simplifying the system by some 
kind of moment closure, either through a negative binomial assumption,7 or through a normal 
approximation,14 is clearly very appealing, although it is then necessary to understand whether 
the results are an artifact of the approximation.

A different approach is to limit the study to the computation of the invasion criteria for each 
species; these are sometimes possible to compute without any approximation.18 In this way it is 
not possible to infer the overall dynamics of the system, but at least one can compute exactly the 
parameter region that allow for species coexistence.

Invasion Criteria
While analyzing the dynamics of a complex nonlinear model, as generally is that including hosts 

and two parasite species, is very difficult, it is often possible to study the (linearized) dynamics 
close to an equilibrium. In particular, the computation of the invasion coefficient (i.e., the growth 
rate of one parasite species in a population close to the equilibrium where hosts coexist with a 
first population species) is sometimes feasible. Basically, this is an extension of the basic reproduc‑
tion ratio (R0) of a parasite in a parasite‑free population, a quantity fundamental in models for 
microparasites,19 but that can be adapted for macroparasites as well.11,20

In some cases it is then possible to characterize a quantity R1
2 representing the basic reproductive 

ratio of parasite 2 invading a population at the equilibrium E1 where hosts coexist with parasite 1. 
If R2

1, the population of parasite 2 is able to initially increase and will establish itself; on the other 
hand, if R1

2, that population will decrease and will eventually get extinct.
Coexistence will be deemed to occur when both R1

2 and R2
1  are greater than 1, i.e., when each 

parasite species is able to invade an equilibrium with only the other species present, together with 
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5Modeling Multi‑Species Parasite Transmission

the host. This principle is well established in theoretical population biology and can be justified, 
under some technical assumptions, through persistence theory.21 One could extend the same 
principle to more than 2 species, through the computation of the invasion coefficient of parasite 
species n into an equilibrium with the first n ‑ 1 present; however, this is generally very difficult 
because it requires finding explicitly an equilibrium with more than 1 parasite species.

Generally the basic reproduction ratio R1
2 can be defined of the average number of established 

adult 2 parasites produced by a newly established parasite 2 during its expected life time.18,20 We 
can split this number in at least three components:

    

R average number of larvae produced over an adu1
2
= ( llt parasite life time

probability that larva i
)

(• ss ingested by ahost probability of a successfu) (• ll establishment)  (4)

All these quantities will depend, according to the model used, on the features of the equilibrium 
E1 since parasite survival and fertility may depend on how many 1 parasites are present in the 
same host (and perhaps also on host density); the probability that a larva is ingested by a host will 
depend on host density; the probability of a successful establishment may depend on host immune 
response, hence on the burden (as a surrogate of the host’s previous exposure) of 1 parasites.

The Model without Direct Interactions
This has been the case mainly analyzed in the literature, mainly because it is the simplest, so 

that it can also serve as a reference for studying the effect of direct interactions. All the terms in 
Table 1 referring to parasite interactions, the matrices γ, r and τ are set equal to 0.

Pugliese18 computes the invasion coefficient for that case. As discussed above, this requires to 
obtain some features of the equilibrium with only 1 parasite species present and then to compute 
the component of formula (4) for the basic reproductive ratio R1

2. 
Without repeating the technical steps presented there, we sketch the main ideas. First of all, 

at an equilibrium, if parasite interactions are neglected, the probability distribution of parasite 
burden follows some simple law, depending on hosts’ age: precisely, if parasite infections occur 
one at the time and hosts do not differ in their resistance to infection, parasite distribution for 
each age is Poisson22 with mean
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(5)

where σ and α are parasite mortality and parasite‑induced host mortality (see Table 1) and ϕ is the 
equilibrium level of the parasite establishment rate (see Eqn. 3). Alternatively (generally data do not 
support the assumption of a Poisson distribution of parasite load, even when accounting for host’s 
age23,24), one can allow for multiple infections or heterogeneity in hosts’ susceptibility to infection, 
obtaining mixtures of Poisson with levels of aggregation comparable to observed ones.22

One can then compute the components of (4). Since γij = 0, the probability of a successful estab‑
lishment is equal to ψ1. Since larvae may either die (at rate δ) or be ingested by hosts (at rate βN), 
the probability of being ingested is !

" !

N
N

N
c N! !

"  with c = δ/β (see Eqn. 3) and N is host population 
size at equilibrium; when the equilibrium includes parasite species 1, this will be denoted as N1.

The only part of (4) that requires lengthy computations is the average number of larvae pro‑
duced over an adult parasite life time. First of all, one notes that in this model (rij = 0), fertility is 
constant (h2); then one has

 
R

h N
c N

T1
2 2 2 1

2 1
1
2

!
"

!

 
(6)

where T1
2 represents the expected lifetime of a 2‑parasite that has just infected an average host in a 

population at the equilibrium E1 where hosts coexist with 1‑parasites. This can be computed as the 
average of the expected lifetime of a 2‑parasite establishing itself in a host of a given age and parasite 

Author: For ConSIStenCy PurPoSe we hAve ItAlIzeD All text  
In equAtIon 4
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6 Modelling Parasite Transmission and Control

burden; the average will be weighed using the probability N s N1 1( )/  of surviving to age s, (according 
to the stationary age density) and the Poisson assumption with (5) as its mean, or the somewhat more 
complicated distributions following from multiple infections, or heterogeneous hosts.

From the Poisson assumption, one obtains, after some algebra,
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(7)

Formula (7) shows that the reproduction ratio of parasite 2 increases with its fertility (h2), with 
its probability of establishment (ψ2), decreases with larval death rate (δ2 through the parameter 
c2), with its adult death rate (σ2) and its induced host death rate (α2). All this is rather intuitive 
and would not require modeling.

More interesting is the transformation of (7) into an expression containing the corresponding 
parameters for parasite 1; the expression is particularly simple if c1 = c2, which means that the pa‑
rameters relative to the larval stages are the same for the two parasite species. One then obtains
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(8)

where !1( )s  represents the probability of surviving to age s, at the equilibrium E1 of coexistence 
with parasite 1.

Formula (8) shows clearly a principle: a parasite that is superior to the resident one (higher 
fertility and lower death rate and induced host death rate) will always be able to invade and will 
never be invaded by other. Mutual invasibility can occur only if there exists a trade‑off between 
traits, namely one parasite has a higher fertility (say h2 > h1), but suffers also from a higher mortal‑
ity or higher damages caused to its host (α2 + σ2 > α1 + σ1). When a trade‑off occurs, Pugliese18 
shows that coexistence is possible but only when the parameters are very precisely balanced: for 
given values of α2 + σ2 > α1 + σ1, there exists a very narrow interval of values h2 (with h2 > h1) that 
gives rise to coexistence.

This conclusion is in strong contrast with that obtained by Dobson7 and others,9‑11 that para‑
site coexistence is easy and is especially facilitated by aggregation in parasite distribution. Given 
that the model with single infections and homogeneous hosts gives rise to very little aggregation 
(which is caused by the mixture of Poisson with different mean, because of hosts’ age), it may be 
not surprising that coexistence is very unlikely in this model.

In Pugliese18 the issue was tackled by analyzing models including mechanisms that built more 
aggregation into parasite distributions. Precisely, two models were analyzed: one with multiple 
infections of larvae (with a Poisson distribution of mean λ), the other with heterogeneity in hosts’ 
susceptibility to infection, i.e., ψ is not constant among hosts, but has a distribution with means 
!1 and ! 2 for the two parasite species.

In both models, the invasion coefficient can be computed from (4) along lines similar to those 
leading to (7) and (8). The computations are more involved and are not reported here. Eventually, 
one arrives at an expression of the type

 
R

h
h1

2 2 2

1 1
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!
"F ( ,  ,  ,  )2 2 1 1# " #

 
(9)

where the function F depends on all details of the model, but has two fundamental properties:
 a. F equals 1 if all parameters are the same (F(α, σ, α, σ) = 1), which means that if two parasite 

species differ only in their fertility, the one with higher fertility outcompetes the other;
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7Modeling Multi‑Species Parasite Transmission

 b. F is decreasing with α2 and σ2 (the reproductive ratio decreases, if a parasite suffers higher 
mortality, or induces a higher death rate on the host) and is increasing with α1 and σ1 (it 
is easier for a parasite to invade, if the resident parasite suffers higher mortality, or induces 
a higher death rate on the host).

These two properties imply that a trade‑off between fertility, on the one hand and parasite‑ or 
host‑induced mortality, on the other hand, is necessary for two parasites to coexist.

The coexistence region could be examined only by numerically computing the function F in 
(9). It was found (see Fig. 1) that the width of the coexistence region was basically independent 
of the degree of aggregation induced by the model: one could assume a very large heterogeneity 
in host susceptibility and thus a very aggregated parasite distribution, but still the potential for 
parasite coexistence was very limited, basically the same as with homogeneous hosts and little 
aggregation.

The rationale for the difference in this result from what obtained by Dobson is discussed 
at length in Pugliese.18 Basically, Dobson7 assumes that parasite distributions are aggregated 
and independent. On the other hand, if aggregation arises from the fact that some hosts are 
more susceptible to infection (from whichever parasite species), it is clear that both species of 
parasites will be found in the most susceptible hosts, so that parasite distribution will be posi‑
tively correlated; the stronger is host heterogeneity (and thus parasite aggregation), the more 
positive the correlation will be. Indeed, Dobson and Roberts,9 studying a negative binomial 
approximation with fixed correlation coefficient, show that positive correlation coefficients 
hinder coexistence.

Clearly, things would be different if some hosts were more susceptible to parasites of species 
1 and others to parasites of species 2; this is explored in references 13‑14 (see below), but it is a 
different explanation: coexistence arises because of differential host susceptibility, not because 
of aggregation per se.

Figure 1. The values of h2 as a function of the coefficient of variation in host susceptibility 
to parasites for which a second parasite species could coexist with a first parasite species. 
Other parameter values are α1 = 5, α2 = 0.5, σ1 = σ2 = 2, h1 = 65, c1 = c2 = 1, d = 0.5, b = 1, K 
= 1000. Figure adapted from Theoretical Population Biology, vol. 57, pp. 145‑165, Figure 6, 
® 2000 Elsevier, with permission.
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8 Modelling Parasite Transmission and Control

Competition among Parasites
The results obtained in the previous section are very elegant mathematically, providing a subtle 

reason for coexistence among parasites without direct interactions: the shift in the age‑dependence 
of host mortality when at equilibrium with either parasite species. On the other hand, they are 
somewhat disconcerting biologically, because coexistence is very unlikely, while routinely parasites 
of several species are found in the same host populations and individuals.25 Moreover, it refers to 
any kind of parasites: even parasites colonizing different organs could coexist only under very 
restrictive conditions, which seems plain nonsense.

The point is that in the model the only density‑dependence mechanism, that keeps parasite 
load from growing to infinity, is the induced host mortality. Hence, parasite density at equilibrium 
will be at a sufficient high level to overall induce a significant host mortality. In turn, the high level 
of host mortality will make it very difficult for a second parasite species to invade, unless it has a 
higher reproduction number than the resident one and then displace it.

In short, to make a realistic multiparasite model, it is essential to introduce competition between 
parasites, whether they are of the same species or of different ones. In Table 1, three levels of competi‑
tion are considered, translated as rates depending on the number of parasites in a host: parasite mortal‑
ity will increase, while parasite fertility and probability of successful establishment will decrease.

Empirical evidence exist for all these facts;26,27 the number of parasite in a host may be relevant 
because of its impact on host resources available for other parasites, or because of the immune 
response induced in the host; in the latter case, it might be better modeling immune response, as 
depending on the history of infection of individual hosts,28 rather than on the current parasite 
load, but this would be rather more complex and current parasite load may be a reasonable proxy 
for history of infection.

Explicit mechanisms of parasite competition have been introduced in models for competition 
between two parasite species by Bottomley et al,13,14 using the methods developed by Isham and 
coworkers.22,29 They consider separately the effect of parasite load on probability of establishment 
and on parasite fertility; here I consider the same cases, neglecting the effect on parasite mortal‑
ity, mainly because of the mathematical complications of this. First, I use the same approach as in 
previous Section, that leads to an exact computation of the invasion coefficient, hence to finding 
the conditions for coexistence as mutual invasibility, only for the case of competition acting on 
parasite fertility. Then, I show the approach by Bottomley et al13,14 that involves the computation 
of approximate equations for the first two moments of parasite distribution, thus yielding condi‑
tions for coexistence but also the dynamic pattern of parasite densities.

Parasite Fertility Depending on Available Resources
Let rij measure the effect of the load of parasite species j on the fertility of parasite species i; 

precisely, I assume (see Table 1) that the fertility of one parasite of species 1, living in a host that 
harbors i parasites of species 1 and j of species 2, is h1(1 ‑ r11)i‑1(1 ‑ r12)j. Note that I use a multi‑
plicative effect (and not an additive one) of parasites, to avoid the fertility becoming negative at 
high parasites load; as long as i r11 and j r12 are not too large, that expression can be approximated 
as h1(1 ‑ (i ‑ 1) r11 ‑ j r12), yielding a more usual expression.

Most of the analysis outlined for the model without direct interactions still applies. One can use 
(4) to find the invasion coefficient for species 2 in a population where the host coexists with species 
1. In the equilibrium with only species 1, equation (5) still holds; in this case, however, the average 
number of larvae produced by an adult parasite is not simply the product of the fertility rate times 
its expected lifetime, because the fertility depends on the number of other parasites present. The 
computations (that will be presented elsewhere) can be performed easily using functional‑analytic 
methods.30 The final result can be written as
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9Modeling Multi‑Species Parasite Transmission

or, if c1 = c2, as
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where ϕ1 is the rate at which (at equilibrium) new 1‑parasites establish themselves (see Eqn. 3), 
while !1( )s  is as in (8).

Expressions (10) and (11), that extend (7) and (8), are rather cumbersome, but one can easily 
use it on a computer to find the parameter values that allow for coexistence, i.e., those for which 
both R1

2 1>  and R2
1 1>  (see Figs. 2 and 3).

Moreover, one can easily understand some particular cases:
if all parameters of the two parameter species are identical, then R1

2 1= ; hence, if r21 < r11 (i.e., 
interspecific is lower than intraspecific competition), R1

2 1= . One then obtains in this context the 
classical result that two competing species that have the same demographic parameters but use 
somewhat different resources can always coexist.

In the extreme case where r21 = 0 (i.e., the presence of species 1 has no effect on parasites of 
species 2) and α1 = 0 (hence population density is at its carrying capacity, K, independently of the 
presence of parasites), expression (10) simplifies to
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where L is the average length of host life. In this case, R1
2 1>  is simply the condition for species 2 

to be able to persist with the host at its carrying capacity. Then two species that do not interact and 
do not increase host mortality can always coexist, provided each can persist with the host.

Figure 2. The region in the parameter space (r21 = r12, h2/h1) that allows species coexistence 
(to the left of the chevron‑shaped curves) for α1 = α2 = 0 (solid curve) or α1 = α2 = 0.1 (dashed 
curve). Other parameter values are r11 = r22 = 0.8, σ1 = σ2 = 2, h1 = 4, c1 = c2 = 1, d = 0.5, 
b = 1, K = 1000.
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10 Modelling Parasite Transmission and Control

Generally, if α1 = 0, computations are easier, since the presence of parasites does not affect host 
demography. Then (10) can be written as
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Figure 2 shows how the coexistence region depends on the ratios of parasite fertilities and the 
strength of their interspecific competition. In the figure, the two parasite species have the same 
value of all parameters except the fertility hi and have a common inter‑specific competition coef‑
ficient r21 = r12. It can be seen that, when inter‑specific competition is very low, the two species 
will coexist for almost all feasible fertility values; on the other hand, the ratio of fertilities must 
become very close to 1 for the two species to coexist, as the inter‑specific competition coefficient 
approaches 0.8, the value of the intra‑specific competition coefficient. When r21 = r12 = r11 = r22, 
coexistence is impossible, as seen in Figure 2 and shown by (11). It can also be seen from Figure 2 
that the coexistence regions are similar for α1 = 0 and α1 = 0.1 (a rather strong parasite‑induced 
mortality, comparing with the other parameter values).

Figure 2 compares parasite species differing in only one demographic parameter; in Figure 3, 
the case of a trade‑off between fertility and parasite‑induced mortality is analyzed, as in Ref. 18. 
One can again see the strong influence of the interspecific competition coefficient r12 = r21 on the 
width of the coexistence region, although coexistence becomes anyway more difficult when the 
competitor is extremely lethal.

The trade‑off between fertility and parasite‑induced mortality was shown18 to be sufficient for 
species coexistence, in absence of intra‑ or inter‑specific competition, although the rates had to be 
balanced very carefully. One may wonder whether this can happen also with inter‑specific com‑
petition equal to the intra‑specific one. However, repeating the computations shown in Figure 3 
with r12 = r21 = r11 = r22 = 0.8, one sees that coexistence is impossible for any values of α2 or h2/h1. 
Vice versa, one finds a region where both R1

2 1<  and R2
1 1< , i.e., both monospecific equilibria 

are uninvadable. Namely, a (narrow) parameter region may exist where, even if inter‑specific 

Figure 3. The region in the parameter space (α2, h2/h1) that allows species coexistence (between 
the curves) for r12 = r21 = 0.5 (solid curve) or r12 = r21 = 0 (dotted curve). Other parameter values 
are r11 = r22 = 0.8, a1 = 0, σ1 = σ2 = 2, h1 = 4, c1 = c2 = 1, d = 0.5, b = 1, K = 1000.
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11Modeling Multi‑Species Parasite Transmission

competition is exactly equal to intra‑specific one (and could even be slightly lower), the system 
exhibits competitive exclusion dependent on initial densities, as it happens for Lotka‑Volterra 
systems when inter‑specific competition is higher than the intra‑specific one.

In Figure 4, two contrasting examples are shown of simulations with inter‑specific competi‑
tion exactly equal to intra‑specific one; in the left panel, competition is rather strong (r11 = r22 = 
r12 = r21 = 0.5) and values of αi and hi have been found, for which both exclusion equilibria are 
attractive, as discussed above; in the right panel, competition is very low (r11 = r22 = r12 = r21 = 
0.01) and values of αi and hi have been found that allow for species coexistence, like in the case 
without competition.

The simulations in the left panel of Figure 4 show a very simple behavior, typical of two‑di‑
mensional Lotka‑Volterra competition systems: fast convergence to a one‑dimensional manifold 
connecting the equilibria and then slow convergence to an equilibrium, along the manifold. In 
this case then parasite competition follows the standard patterns of competition theory and it 
becomes reasonable the search for some simple approximating system.

In the simulation shown in the right panel of Figure 4, after some initial oscillations host 
population and parasite loads approach a stable coexistence equilibrium. It may be noted that the 
population density reached (around 4) is extremely lower than the carrying capacity (1,000); this 
is not meant to be realistic and is due to the choice of very high induced mortalities and the very 
low level of parasite competition.

The previous analysis can be applied, in a relatively simple way, when parasite resource compe‑
tition affects only parasite birth rate. Judging from preliminary simulations, it seems likely, that 
similar results will hold also when parasite competition increases death rates (through parameters 
r of Table 1) or decreases establishment probability (through parameters γ of Table 1). The com‑
putations outlined in this Section do not easily extend however, since parasite distribution will 
not be Poisson for fixed age (as in (5)), so that no explicit formulae can be found, although the 
ideas of invasion criteria still apply.

Instead, normal approximations can be obtained,14 as shown in the following Section.

normal Approximations
Bottomley et al13,14 have studied parasite competition through normal approximations. The 

idea is very simple: from the equations in the variables pij, or directly from computations of the 

Figure 4. Simulations of the system in the variables pij, with equal inter‑specific and intra‑specific 
competition coefficients. In the left panel, parameter values are r11 = r22 = r12 = r21 = 0.5, α1 = 
0.1, α2 = 0.5, σ1 = σ2 = 2, h1 = 4, h2 = 4.55, c1 = c2 = 1, d = 0.5, b = 1, K = 1000. Axes represent 
average parasite loads, X1 = Σi, j ipij/N and X2 = Σi, j jpij/N. The solid line shows a simulation 
starting from (0.55, 0.45), the dotted line one starting from (0.25, 0.75). In both cases N(0) = 
800. In the right panel, parameter values are the same except r11 = r22 = r12 = r21 = 0.01, h2 = 
4.492. On the x‑axis, time; on the y‑axis, host population density (scale on the left) N = Σi, j pij 
and average parasite loads (scale on the right) X1 and X2.
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12 Modelling Parasite Transmission and Control

possible instantaneous changes in parasite load, one can find equations satisfied by the first mo‑
ments of the parasite distributions (means, variances, covariances...). Unfortunately, as usual in 
most complex models in ecology, the equations for lower moments have terms including higher 
moments; to obtain a closed low‑dimensional system, one then needs some form of “moment 
closure”.31 A simple approach is the normal approximation,22 i.e., to assume that higher moments 
can be expressed in terms of the first and second moments, according to the same relations that 
hold for a normal distribution. The assumption may not seem very adequate for parasites, since 
normal distributions are continuous and include a negative part; the negative binomial distribution 
used since Anderson and May2 does not have these problems, but cannot be easily generalized to 
two or more variables;10 moreover, Bottomley et al14 show, through simulations, that the normal 
approximations works reasonably well, as long as parameter values are not extreme.

The use of the normal approximation requires a correction in the laws used for density‑depen‑
dence. Precisely, it becomes more convenient assuming that parasite fertility decreases with the 
number of parasites according to an additive law h1(1‑ (i ‑1)r11 ‑ jr12) and similarly the probabil‑
ity of establishment is ψ1(1‑ iγ11‑ jγ12). For the rule to be reasonable, it should be assumed that 
fertilities (or probability of establishment) are 0 when the quantities are negative. The following 
analysis is feasible only without that restriction; however, as long as the parameters r and γ are not 
too large, ignoring the restriction does not make a big difference.14

The equation (1) for the larvae still hold, together with the quasi equilibrium approximation 
(2) that, with the change to the additive law, changes (3) into
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where xi is the i‑parasite load and < > represents the average.
It is also easy writing an equation for the total host density N
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 (13)

One can then write equations for <xi> obtaining
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(14)

Competition at Establishment. No Induced Mortality
In the case where the parasites donot induce mortality (αi = 0) and parasite competition acts 

only by reducing the probability of establishment (rij = τij = 0), equations (14) become a closed 
system. In fact, N is then fixed at the carrying capacity K with b(K) = d and (14) reduces (dropping 
for ease of notation the brackets) to
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(15)

Equations (15) have exactly the form of a Lotka‑Volterra competition system. Hence, according 
to the values of the coefficients, one can have the four possible outcomes: equilibrium coexistence 
of the two species, competitive exclusion of species 1, competitive exclusion of species 2, contingent 
competitive exclusion (either species may be excluded depending on initial densities).
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13Modeling Multi‑Species Parasite Transmission

First of all, it is necessary to assume that each parasite species alone is able to persist with the 
hosts at the carrying capacity K. This condition can be written in terms of basic reproductive 
numbers as
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Then, the conditions for coexistence are
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In case R0
1 and R0

2 are much larger than 1, conditions (17) simply mean that inter‑specific 
competition is lower than intra‑specific one.

If both conditions are reversed (intra‑specific competition lower than inter‑specific one), one 
obtains contingent competitive exclusion.

Finally, if one of (17) holds and the other not, strict competitive exclusion of one species 
occurs.

Note that, while (15) are obtained from (14) without approximations, still they are not exact 
for the complete system because they have been derived neglecting the constraints (see above) that 
only the positive values of h1(1 ‑ (i ‑ 1)r11 ‑ jr12) and ψ1(1 ‑ iγ11 ‑ jγ12) had to be considered.

Competition Acting on Parasite Fertility
One has to add equations for the second moments, since they appear in right hand sides of 

(14) unless rij = 0.
Using as variables the varainces and covariance (V x x1 1

2
1

2
! !< >  < >   V x x2 2

2
2

2
! !< >  < >  , 

C x x x x12 1 2 1 2! !< >  < >< >  ), one obtains, after some lengthy calculations, equations satisfied by 
them, involving the third moments. The normal approximation allows to write the third moments 
in terms of the first two, using the relation

 < > = < >< > + < >< > + < >< > – 2< ><UVW UV W UW V VW U U        VV W>< >  (18)

exact if (U, V, W) follows a multivariate normal distribution.
The expressions in the general model are very complex and add little insight, though they could 

be used for numerical computation. I restrict to the case of competition acting only on parasite 
fertility, the case analyzed above through invasion coefficient and also studied13,14 through normal 
approximations.

First of all, ϕ1 and ϕ2 are given by (12) that is rewritten now, using V1, V2 and C12 as
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and analogously for ϕ2. Then equations (14) can be rewritten for this case as
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Finally, writing the equations for the second moments and applying also (18), one obtains:
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Equations (13) ‑ (20) ‑ (21) ‑ (22) (with the analogous ones for x2 and V2) are a closed system 
describing parasite competition. One can use them to find the equilibrium with only one species 
present and then find the invasion conditions for the second species; mutual invasibility could 
then be considered as denoting coexistence. Unfortunately, analytical computations are still rather 
difficult and it is generally necessary to resort to numerical computations.
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14 Modelling Parasite Transmission and Control

The normal approximation works effectively only when host death rates are small.14 In the 
limiting case where α1 = α2 = 0 and also b(N) = d, at equilibrium x1 = V1 and C12 = 0; then, using 
these relations in (20), the equations for x1 and x2 take the Lotka‑Volterra form (15) and one can 
easily analyze them.

One can also compare numerically system (13) ‑ (20) ‑ (21) ‑ (22) with the exact system 
presented in the Appendix; two examples of this comparison are shown in Figures 5 and 6.

From the figures it can be seen, first of all, that, in both cases, simulations converge quickly 
to a coexistence equilibrium (inter‑specific competition is half the intra‑specific one). Moreover, 
the same qualitative trends exist for both exact and approximate models; increasing host death 
and birth rate (while maintaining all other parameters) results in decreased parasite loads, hence 
in higher host density. Similarly, parasite aggregation and correlation increase with host death 
and birth rate, since in these models parasite aggregation (and correlation) results from the 
hidden variable age: for each given age, parasite distributions are Poisson (no aggregation) and 
independent, but differ in their means; the mixture of these distributions results into a (little) 
aggregated distribution.

On the other hand, the absolute values predicted for parasite loads are rather different, especially 
for the more abundant species (2) and so is host density, since it will suffer from parasite‑induced 
mortality. It must be remembered, however, that a multiplicative law for parasite fertility is used 
in the exact model and an additive law in the normal approximation; the latter results in a lower 
fertility when there are at least 3 parasites in a host, so it is no wonder that they yield quantitative 
different results.

Competition and host heterogeneity
As can be seen from Figures 5 and 6 (right panels), the previous models yield a very low cor‑

relation between parasite distribution and a very low aggregation in each. Then, on the one hand, 
one could feel justified in assuming a priori that parasite distributions are independent; on the 
other hand, it seems necessary to allow for some aggregation in the distributions, to have a model 
closer to reality. The approach by Dobson7 and others11 is to use independent negative binomial 
distributions for each species, or with a fixed correlation coefficient.9,10

Bottomley et al13,14 have instead modeled a mechanism that produces parasite aggregation, 
studying its effects on species coexistence, according to the detailed assumptions used. Precisely, 
they assume that the parameter ψ (establishment probability) is not a constant, but varies among 

Figure 5. Host density and parasite loads vs time (left panel); correlation between the distribu‑
tion of the two species and aggregation (= variance/mean) of each vs time (right panel) in two 
simulations of the infinite system. Simulation “a” has b = 0.2, d = 0.1; simulation “b” has b = 1, 
d = 0.5. All other parameter values are the same: r11 = r22 = 0.8, r12 = r21 = 0.4, α1 = α2 = 0.01, 
σ1 = σ2 = 2, h1 = 4, h2 = 5, c1 = c2 = 1, K = 1000. Initial conditions are N(0) = 800 and Poisson 
independent distribution for each parasite of means 0.25 and 0.75, respectively.
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15Modeling Multi‑Species Parasite Transmission

hosts according to some given distribution (like in Fig. 1); the equations for the second moments 
will then involve mean and variance of this distribution. Note that, since ψ is a probability, it must 
lie between 0 and 1, so that its variance cannot be large; however, it is also possible to assume that 
the encounter rates of hosts with larvae (parameter β in Table 1) is variable among hosts; by a 
redefinition of parameters one can include this variation in ψ and then its variance can take any 
value, as will be assumed here.

If some hosts have a higher predisposition to infection (measured by their value of ψ), they are 
more likely to get infected, so that a correlation will build up between ψ and parasite load x. The 
covariance between ψ and x, CΨx will then be a variable of the system.

To keep things simple, I will restrict the analysis to the case where parasites do not induce 
mortality (αi = 0) and parasite competition acts only by reducing the probability of establishment 
(rij = τij = 0). Then, host population density is fixed at K and equations for parasite loads xi do not 
depend on variances (see (15)).

The resulting competition system will assume given (different distributions) for ψ1 and ψ2, 
summarized by their means !1 and ! 2, variances V1

!  and V2
! and covariance (CΨΨ). Variables of 

the system will be parasite loads (x1 and x2) and the covariances between ψi and xj (Cij
x! ). Through 

some steps,14 one arrives at the following system of equations
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with analogous equations for x2, C x
21
!  and C x

22
! .

In order to study coexistence in model (23), one can, as discussed above, compute the equilib‑
rium Ei with only one species present and find the conditions for invasion from the other species. 
As shown in Bottomley et al,14 this can be written as reproduction numbers
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Figure 6. Host density and parasite loads vs time (left panel); correlation between the dis‑
tribution of the two species and aggregation (= variance/mean) of each vs time (right panel) 
in two simulations of the approximating system (13)‑(20)‑(21)‑(22). Simulations “a” and “b”, 
parameters and initial conditions as in Figure 5.
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16 Modelling Parasite Transmission and Control

where all quantities are computed at the equilibrium E1. Moreover, R0
2 and R0

1 are the basic reproduc‑
tion number given in (16), using the means of ψ1 and ψ2, ρ is the correlation coefficient between 
ψ1 and ψ2 and cvi

!  are the coefficients of variation (= standard deviation/mean) of ψi.
The interest of the analysis of this model lies mainly in understanding the role of ρ, cv1

!  and 
cv2

! . In fact, high values of cv1
!  and cv2

!  correspond to highly aggregated parasite distributions at 
equilibrium; indeed, Dobson7 had found that aggregation promotes parasite coexistence.

One can start the analysis by a simple case: when ρ = 1, cv1
! , cv2

!

 the conditions for coexistence 
R1

2 1>  and R2
1 1>  become identical to the conditions (17) found without heterogeneity. Hence, when 

there is perfect correlation among hosts between predispositions to each parasite species, a high 
aggregation (as long as it is the same in both species) has no effect on coexistence. This conclusion 
is similar to what found by Pugliese18 in the exact invasion analysis of a model without direct in‑
teractions (see Fig. 1). When cv1

!  and cv2
!  are different, the conclusion is not as straightforward; 

one can see that the invasion of a parasite is hampered, if its variation in predisposition is much 
larger than that of the resident parasite, while is facilitated if its much lower; on the whole, still 
aggregation does not promote parasite coexistence.

Decreasing the correlation ρ among host predisposition to parasites makes coexistence easier; 
this can be seen from (24), since the coefficient of ρ is negative. Intuitively, it is clear that, if 
some hosts are more predisposed to parasite 1 and others to parasite 2, parasite coexistence 
becomes easier.

Less intuitive is the fact that there is an interaction between the effects of the two parameters. 
When ρ < 1 and cv cv1 2

! !
! , increasing the coefficients of variations (still keeping cv cv1 2

! !
!  

makes it easier satisfying the invasion conditions. This follows indirectly from (24), since higher 
cv1

!  results in lower xi at equilibrium. Hence, in these circumstances the conclusion that aggrega‑
tion promotes coexistence may be justified. A quantitative example is shown in Figure 7; it can 
be seen that an imperfect correlation in predisposition (ρ < 1) and high coefficients of variation 
allow for the coexistence of parasite species that are identical in all demographic parameters, but 
with inter‑specific competition higher than intra‑specific one; the effect is not very large, though, 
unless correlation is rather low.

Figure 7. The maximum value of inter‑specific competition γ12 = γ21 that allows for coexistence, 
vs cv cv1 2

! !
! . for different values of ρ. Other parameter values are γ11 = γ22 = 0.5, α1 = α2 = 0, 

σ1 = σ2 = 2, h1 = h2 = 15, c1 = c2 = 1, K = 1000, d = 0.5.
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Conclusions
Several models for parasite competition have been presented. All are rather complex and do 

not allow for an easy analysis. For this reason, only some special cases have been considered in this 
chapter and more extensive analyses would be necessary before drawing clear conclusions. In Table 2 
I present a summary of the models considered and the mechanisms yielding coexistence in each.

Still, it is possible to state some general, though preliminary, results. Parasite coexistence gen‑
erally requires intra‑specific competition; if parasite populations are controlled only indirectly 
through their effects on hosts (through mortality or fertility) and do not compete directly for 
host resources, then at equilibrium host density will be severely reduced and parasite coexistence 
would require precise balances of demographic parameters that appear rather unlikely. Such a 
trade‑off between parasite fertility and survival (including the host’s) would result in a coexistence 
of metapopulation type, with one species quicker at reaching new hosts and another surviving 
longer on the colonized ones.

On the other hand, if parasite populations are controlled by their competition for host re‑
sources, or other types of interactions among them, then coexistence occurs as long as inter‑specific 
competition is lower than intra‑specific one, following a dynamics reminiscent of Lotka‑Volterra 
equations.

A specific feature of host‑parasite interactions is host predisposition for infection, that is 
generally considered the most relevant mechanism generating aggregated parasite distributions, 
a feature universally observed in empirical surveys.24 If there exists only a generic predisposition 
for all parasite species, then this has no effects on the feasibility of parasite coexistence. On the 
other hand, if the predisposition to different parasite species differs among hosts, then coexistence 
becomes more likely, as quite obvious intuitively; in this case, a higher variance in predisposition 
generates both a higher aggregation in parasite distribution and a larger parameter region for 
coexistence; in this limited sense, it may stated that aggregation promotes coexistence.

Table 2. Summary of models examined in this chapter

Biological Assumption Mathematical Method Mechanisms of Coexistence

No direct interactions. 
Induced mortality7

Assumption of independent 
negative binomial 
distributions

Aggregation of parasite distributions

As above9 Negative binomial 
distributions with fixed 
correlation coefficient

As above and favored by negative 
correlation coefficient

As above18 Exact computation of 
invasion coefficients

Trade‑off fertility‑survival, with subtle 
effects on host mortality schedules 
that can allow coexistence

Competition at 
establishment. No induced 
mortality13

Normal approximations Inter‑specific competition lower than 
intra‑specific

As above with variance in 
predisposition to infection13

Normal approximations Imperfect correlation between 
predisposition to infection from the 
different parasite species

Density‑dependence in 
parasite fertility.13 Induced 
mortality allowed (this 
chapter)

Normal approximations.13 
Exact computation of 
invasion coefficients (this 
chapter)

Inter‑specific competition lower than 
intra‑specific
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18 Modelling Parasite Transmission and Control

Are there general predictions about patterns that can be observed in natural population? At 
this level of generality, it seems very difficult; for instance, predictions about correlations between 
different parasite species depend on the mechanisms allowing for coexistence. Positive (but low) 
correlation coefficients are produced simply by the mixture of hosts of different age (and other 
groups); strong intra‑specific competition, coupled with a low inter‑specific one, will make them 
more positive, as well as a strong variance in generic predisposition to infection. On the other 
hand, predisposition to different parasite species differing among hosts will force towards nega‑
tive correlation.

Finally, the dynamics exhibited by the models displayed in this chapter is very simple: quick 
convergence towards an equilibrium. This indeed is a typical behavior of competition systems 
and one may wonder whether interactions with hosts can modify this. The examples shown in 
this chapter have considered a rather limited parameter range, that allowed for a low‑dimensional 
truncation of the infinite system and/or for a reasonable normal approximation. It is known, on the 
other hand, that host‑parasite interactions may induce cycles, especially when parasites affect host 
fertility,2 although variance in host predisposition to infection and parasite competition decrease 
the likeliness of cyclic behavior.32 Simple dynamics with quick convergence to equilibrium has been 
the rule in the examples examined for this chapter; however, it seems likely that more extensive 
numerical explorations will uncover examples of complex dynamics in host‑2 parasite systems.
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Appendix. The Model Analyzed
The system in the variables pij(t) arising from the assumptions shown in Table 1 is:
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where ϕ1 = β1L1ψ1 and, by convention, p‑1, j(t) = pi,‑1(t) = 0.
The system is completed by equations (1) for L1 and L2.
In the quasi‑equilibrium approximation, L1 and L2 are given by (2) and ϕ1 [ϕ2] by (3).
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