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Abstract

We present and analyze a model for the dynamics of the interactions between a

pathogen and its host’s immune response. The model consists of two differential

equations, one for pathogen load, the other one for an index of specific immunity.

Differently from other simple models in the literature, this model exhibits, accord-

ing to the hosts’ or pathogen’s parameter values, or to the initial infection size, a

rich repertoire of behaviours: immediate clearing of the pathogen through aspecific

immune response; or acute infection followed by clearing of the pathogen through

specific immune response; or uncontrolled infections; or acute infection followed by

convergence to a stable state of chronic infection; or periodic solutions with in-

termittent acute infections. The model can also mimic some features of immune

response after vaccination. This model could be a basis on which to build epidemic

models including immunological features.
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1 Introduction

Several recent papers [1–3] have started to bring immunological considera-

tions into models for epidemic spread, especially concerning the evolution of

virulence [4,5]. Gilchrist and Sasaki [4] have developed the so-called ‘nested’

approach, in which an explicit model of pathogen-immune response dynamics

within each individual host is coupled to a model of epidemic spread between

hosts; an approach that has been followed in [5–7]. The idea of integrating

host immune response in population models had arisen also in studies of the

dynamics of macroparasites [8], especially when the impact of phenomena like

waning immunity is investigated.

While an accurate modelling of the dynamics of the interactions between

pathogens and the several types of immune cells is a fascinating subject (see

for instance [9–11]), in a ‘nested’ approach the immunological model needs be

reasonably simple, but able to qualitatively reproduce the basic behaviour of

disease dynamics caused by different pathogen agents.

Models that include different types of immune cells have been used as an

ingredient of epidemic models by Kostova [7] and have been fitted to data on

CD8 T cell responses in HIV [12] and choriomeningitis [13] infections.

Since we do not aim at an accurate model of immune response, but simply

to a phenomenological description of the time course of infections, we follow

instead the approach used in [14,4,5] and in several models in [9] of describing

the immune response through a single variable, the level of pathogen-specific
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immunity, that may represent some precise quantity, like the density of spe-

cific B-cells or T-cells or antibodies, or a more generic index related to the

different types of immune cells specific for that pathogen agent. Analogously,

the pathogen load is described through a single variable, giving thus rise to a

two-dimensional dynamical system.

Most dynamical description of pathogen-immune interactions give rise to a

stereotyped behaviour. Some models [4,5] are tailored for a short-term de-

scription of successful immune response: thus, for all parameter values, an in-

fection gives rise to a strong and persistent immunity, that completely clears

the pathogen. Other models [14,9] consider long-term effects, such as immu-

nity decay, and share some properties of epidemic models; one may define

a number R representing pathogen’s reproduction ratio: when R > 1, from

any initial inoculum a sizeable infection will occur, followed by a growth in

immune response reducing the infection to a positive equilibrium, where the

pathogen persists at a positive (possibly low) level contrasted by host’s im-

mune response; on the other hand, when R < 1, the infection cannot start

and the immune system eventually completely clears the pathogen.

We build here a slightly more complex model, that considers also the effect

of aspecific immune response, such as mediated by macrophages, and Holling-

type functional responses of immune cells to pathogen level. We show that this

slight increase in complexity allows for a much more diverse behaviour of the

system, according to parameter values and initial conditions. Hence, we believe

that the resulting may be a satisfactory flexible description of the qualitative

features of the dynamical interactions between pathogens and immune system.
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2 The model

We describe an infected individual through its pathogen load P and its level of

specific immunity B. The variable B may represent some precise quantity, like

the density of specific B-cells or antibodies, or a more generic index related to

the different types of immune cells specific for that pathogen agent.

As discussed in the Introduction, several authors have described the inter-

actions of a pathogen and its host’s immune response through a dynamical

system involving these 2 variables. Gilchrist and Sasaki [4] used the following

model, where r is the pathogen’s replication rate, the immune cells proliferate

proportionally (with a proportionality constant a) to the pathogen load, and

the pathogen is killed by immune cells with a Lotka-Volterra-type predator-

prey relationship with constant c:































P ′ = rP − cBP

B′ = aBP

(1)

The system has to be completed with initial conditions P (t0) = P0 > 0,

B(t0) = B0 > 0. It is very easy to see (actually system (1) can be transformed,

changing t into −t, into the classical Kermack-McKendrick epidemic model)

that P (t) initially increases (if r > cB0) to a maximum and then declines to 0,

while B(t) increases to an asymptotic level (depending on initial conditions)

B∞. Hence, every infection is, after an acute phase, completely cleared.

André and Gandon [5] simplified (1), by assuming that the proliferation rate

of immune cells is independent of pathogen load, as long as it is positive [15],
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obtaining the system






























P ′ = rP − cBP

B′ = βB

(2)

The behaviour of P (t) is similar to the previous case, but has the advantage

of being expressed through a closed formula, while B(t) grows to infinity, so

that the solution can be adequate only for t not too large.

Mohtashemi and Levins [14] considered instead two other features of the im-

mune system, the spontaneous production (at a very low rate) of specific cells,

as well as their decay (these aspects were not considered in [4,5] that are lim-

ited to acute infections). Moreover, they assumed instead that immune cells

are produced by another compartment (constant in size) proportionally to

pathogen load. Thus they studied the system































P ′ = rP − cBP

B′ = kP − δB + h

(3)

If we take P (t) ≡ 0, i.e. we consider an uninfected individual, it is easy to see

that B(t) will approach the equilibrium value h/δ, that can then be considered

the typical value for uninfected individual. If we consider the dynamics within

an individual infected at time t0, it is then natural to add to (3) the initial

conditions B(t0) = h/δ, P (t0) = P0 > 0, where P0 is the inoculum size.

If the threshold condition r > ch/δ is satisfied, the pathogen-free equilibrium

(0, h/δ) is unstable, and pathogen load will initially increase; then (P (t), B(t))

will converge to the positive equilibrium
(

δr
c
− h

)

1
k

which is globally stable

[16]. Otherwise, if r ≤ ch/δ, the pathogen load immediately starts decreasing
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and the infection is completely cleared. In summary, there are only two possible

behaviours: either an infection fails immediately, or, if it initially succeeds, it

leads to an equilibrium where the pathogen is maintained at low density.

Several other models are proposed in Nowak-May [9] for virus-immune dy-

namics, but all share this feature: if an infection is possible, it is never cleared

completely. It must be remarked that, if the deterministic model is viewed

as an approximation of a more realistic stochastic model, it is possible (or

perhaps likely) that stochastic extinction of pathogen agents occurs when the

pathogen load, as predicted by the deterministic model, is low.

Kostova [7] extends these models, by considering two types of immune cells:

effector T cells and memory T cells. Assuming that the latter do not decay at

all, the typical behaviour of the system is an acute infection, controlled first

by effector T cells, then by memory T cells, until complete clearance of the

pathogen.

Here we propose and analyze another extension of model (3), sharing part of

the structure with the model proposed by d’Onofrio [17] for tumour–immune

interactions, but with the inclusion of aspecific immune response. The result-

ing model exhibits a rich dynamical repertoire, allowing for acute infection,

possibly dose-dependent, followed by deterministic pathogen clearance, or for

chronic infection, possibly with periodic fluctuations in pathogen load and im-

mune response. We assume that the predation of immune cells on pathogens

follows a Holling function of the 2nd type , and moreover we postulate that a

similar action is performed by aspecific cells, whose density is a constant M .

Thus, the first equation of (1), (2), or (3) is modified to

P ′ = rP −
csP

1 + asP
B −

cuP

1 + auP
M. (4)
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As for the second equation, we keep the spontaneous production and the

decay of specific immune cells as in (3), but assume, as in (1), auto-replication

of specific immune cells, stimulated by pathogen load, but with a maximum

replication rate. The resulting equation is

B′ =
kP

1 + kmP
B − δB + h. (5)

It is convenient to rescale the variables, so as to obtain a non–dimensional

system. We choose the following changes of variables:

x =
kP

δ
y =

csB

δ
τ = δt.

Letting =̇ d
dτ

, we obtain the system



































ẋ = αx −
xy

1 + βsx
−

mx

1 + βux

ẏ =
xy

1 + γx
− y + η

(6)

where

α =
r

δ
βs =

asδ

k
βu =

auδ

k
γ =

kmδ

k
η =

csh

δ2
m =

cuM

δ
.

Before proceeding with the analysis, we make the following minimal assump-

tions on the parameters of system (6):

(1) The replication rate of the specific immune cells is higher than their decay

rate, at least when the pathogen load is very high. Looking at (5), this

translates into k
km

> δ, i.e. γ < 1.

(2) The specific immune response responds better to high pathogen loads
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than the aspecific response. This translates into as < au, i.e. βu > βs ≥ 0.

There may be other natural assumptions on the order of magnitude of the

parameters, but they are not needed in a preliminary analysis.

3 Equilibria and null-clines

System (6) has clearly the pathogen-free equilibrium (0, η).

In order to look for other equilibria, consider the null-clines.

Letting ẏ = 0, we obtain

y = f(x) :=
η

1 − x
1+γx

. (7)

The function f is positive for x < ximm = 1
1−γ

, which is a vertical asymptote.

ximm > 0, because of Assumption 1. f is increasing and convex in [0, ximm).

Letting ẋ = 0, we obtain

y = g(x) := (1 + βsx)

(

α −
m

1 + βux

)

. (8)

Computing the derivatives, one sees that g is increasing and concave, because

of Assumption 2.

Summarizing, the signs of the time derivatives of x and y are as follows:

• ẏ > 0 for all x ≥ ximm and, when x ∈ [0, ximm), ẏ < 0 for y > f(x).

• ẋ > [<]0 for y < [>]g(x).

From this information about f and g one obtains (see Fig. 1) the following
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Fig. 1. The function f (solid line) and four instances of the function g (dotted and
dashed lines) for different values of α = 7.5, 7.8, 8, 8.4. Other parameter values are
η = 0.05, γ = 0.05, m = 8, βs = 10−10, βu = 0.1.

conclusion:

• if g(0) > f(0), i.e. α−m > η, there exists a unique x∗ ∈ (0, ximm) such that

f(x∗) = g(x∗). This corresponds to a positive equilibrium (x∗, y∗ = f(x∗))

of (6);

• if g(0) < f(0), there may be 0 or 2 solutions (1 in non-generic cases) of

f(x) = g(x). Some conditions that guarantee that there are no solutions

(hence, no positive equilibria of (6)) are g′(0) ≤ f ′(0) or g(ximm) ≤ f(0).

Recalling the definitions of f and g, and checking also the Jacobian of (6) at

the equilibria, one obtains

Proposition 1 • If α > η + m, the pathogen-free equilibrium is unstable

and there exists a unique positive equilibrium (x∗, y∗). (x∗, y∗) may be lo-
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cally asymptotically stable or unstable; in the latter case, if the solutions are

bounded (see Prop. 2 below), Poincaré-Bendixson theory implies the exis-

tence of a periodic solution surrounding the equilibrium.

• If α < η + m, the pathogen-free equilibrium is locally asymptotically stable,

and there exist either 0, 1 and 2 positive equilibria. If there are 2 positive

equilibria (x∗

1, y
∗

1) and (x∗, y∗) with x∗

1 < x∗, then (x∗

1, y
∗

1) is a saddle point,

while (x∗, y∗) may be asymptotically stable or unstable; in the latter case, it

may be an unstable focus, or an unstable node.

Proof. Most statements follow immediately from the above arguments. We

need only to check the Jacobian of (6) at a positive equilibrium (x∗, y∗).

Through some computations, we obtain

J∗ =

















α − y∗

(1+βsx∗)2
− m

(1+βux∗)2
− x∗

1+βsx∗

y∗

(1+γx∗)2
x∗

1+γx∗
− 1

















=

















x∗

1+βsx∗
g′(x∗) − x∗

1+βsx∗

η f ′(x∗)
f(x∗)

− η
f(x∗)

















(9)

It follows

det(J∗) =
x∗

1 + βsx∗

η

f(x∗)
(f ′(x∗) − g′(x∗)). (10)

If there is only 1 equilibrium, we have (generically) f ′(x∗) > g′(x∗) (see Fig. 1);

if there are 2 equilibria, we have f ′(x∗

1) < g′(x∗

1) and f ′(x∗) > g′(x∗). We then

have from (10) that (x∗

1, y
∗

1) has 2 eigenvalues of opposite sign, so that it is a

saddle point; on the other hand, to ascertain the stability of (x∗, y∗) , we need

to study the sign of tr(J∗) = x∗

1+βsx∗
g′(x∗)− η

f(x∗)
, which may be either positive

or negative. �
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The different possibilities are outlined in Fig. 3 and 4, where the phase plane

and some typical solutions are plotted for different values of the parameter α.

Since the parameters α and η+m represent the replication rate of the pathogen

and, respectively, the overall efficacy of the immune system (see Eq. (4)), we

note that the condition α > η+m corresponds to a case of very high virulence

capable of overcoming the non-specific immunity, whatever the extent of the

initial infection.

From the phase plane, one may note that in principle there may exist solutions

diverging to +∞ with both x(t) and y(t) increasing, and with y(t) < g(x(t)).

In the Appendix, we show the following

Proposition 2 If βs = 0 or γ = 0 or α < 1
γ
− 1, all solution of (6) starting

from (x0, η) with x0 > 0 are bounded and converge either to an equilibrium or

a periodic solution of (6).

If βs > 0 and α > 1
γ
− 1, there exist solutions of (6) starting from (x0, η) with

x0 > 0 such that x(t) and y(t) are monotonically increasing and limt→∞ x(t) =

limt→∞ y(t) = +∞.

Remark 1 It is clear from the structure of (6) that diverging solutions are

possible, because it is assumed that pathogens grow exponentially, in absence

of specific immune response, and that growth may be faster than the maximal

growth of immune response. One could change the assumption of pathogen

exponential growth, since pathogen growth will eventually be limited by the

total host resources. We instead retain the assumption of exponential growth,

interpreting diverging solutions as instances in which host defenses are not

able to respond to pathogen replication, and infection ends with host death.
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Moreover, we recall that the parameter 1/γ represents the maximal replication

rate of the immune system. Thus is clear and intuitive the meaning of the

condition α > 1/γ−1, which implies that for sufficiently high initial infections

(of a naive individual, i.e. at the basal level of specific immunity) the infection

evolves unbounded. Models satisfying this conditions appear to be the most

realistic.

Note that βs or γ = 0 imply instead that the immune system can always con-

trol the infection whatever the initial infection be. Therefore, the Holling type

functional form of the pathogen removal and of the response of the immune

system to pathogen level is, in this model, necessary for the possibility that

large infections escape immune control.

4 Bifurcation diagrams and examples

The qualitative behaviour of solutions may be summarized as a bifurcation

diagram, choosing as parameter, for instance, α (see Fig. 2). At α = α0 :=

η+m, the equilibrium (0, η) undergoes a transcritical bifurcation, which, under

the condition mβu+ηβs > η, is subcritical, meaning that a positive equilibrium

exists unstable for α < α0, α close to α0. In this case, there will exists α1 < α0

in which the positive equilibrium undergoes a saddle-node bifurcation.

For α < α1 there are no positive equilibria, and the pathogen–free equilibrium

(0, η) is asymptotically stable; actually, if all solutions are bounded (Prop. 2),

Poincaré-Bendixson theory implies that it is globally attractive from positive

initial points. Still, the system is excitable, in the sense that if the initial

pathogen dose x0 is sufficiently large, then, starting from (x0, η), x(t) grows

to high values before the solution eventually approaches (0, η).
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Fig. 2. The bifurcation diagram of equilibria with respect to α. The circle with H

corresponds to the value (at α = αH) of Hopf bifurcation; the circle with T to
the tangent (saddle-node) bifurcation at α = α1. Parameter values are η = 0.05,
γ = 0.05, βs = 10−10, βu = 0.1. In the left panel a), m = 1; in the right panel b)
m = 8.

For α1 < α < α0, the pathogen–free equilibrium (0, η) is still asymptotically

stable, but there also two positive equilibria (x∗

1, y
∗

1) and (x∗, y∗) with x∗

1 < x∗.

For α > α0, there exists a unique positive equilibrium (x∗, y∗), and no solution

with x0 > 0 will approach the pathogen-free equilibrium.

Concerning the stability of the positive equilibria, we can say that, when there

are two equilibria (α1 < α < α0), the lower one (x∗

1, y
∗

1) is an unstable saddle

point. Moreover, when α is large enough, the equilibrium (x∗, y∗) is always

unstable.

There are two possible paths to instability: in one case (see Fig. 2a), (x∗, y∗)

is asymptotically stable for α close to (and larger than) α1; there exists then

a value αH at which the positive equilibrium (x∗, y∗) undergoes a Hopf bifur-

cation: for α < αH , (x∗, y∗) is asymptotically stable, while it is unstable for

α > αH . In Fig. 3, we show the phase plane of solutions for α < αH and for
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Fig. 3. Examples of the phase plane of the system (6). Parameter values are η = 0.05,
γ = 0.05, βs = 10−10, βu = 0.1, m = 1.5. In the left panel a), α = 1.75; the solution
shown is slowly converging to the equilibrium at the centre of the spiral. in the
right panel b) α = 1.9; two solutions are shown, one starting from (0.1, η) and
spiraling inwards, the other one starting from (1, 0.8) and spiraling outwards; both
are converging to a limit cycle in between.

α > αH . It may also happen that there are several Hopf bifurcation values,

with the positive equilibrium alternately losing and acquiring stability.

In the other case (Fig. 2b), the equilibrium (x∗, y∗) is unstable for all α. The

limit cycle existing for α > α0 because of Poincaré-Bendixson theory, emerges

through a homoclinic bifurcation at α = α0. Numerically, it appears that,

for α < α0, all solutions (except for the exceptional ones lying on the stable

manifold of (x∗

1, y
∗

1)) converge to (η, 0), while for α > α0 they converge to a

periodic solution (see Fig. 4).

There exists moreover a value α∞ = 1
γ
− 1, such that for α < α∞ all solutions

are bounded, and converge to one of the previous alternatives; for α > α∞,

there exist diverging solutions of (6).

Under the condition mβu+ηβs < η (which seems less likely, since entails a large
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Fig. 4. Examples of the phase plane of the system (6). Parameter values are η = 0.05,
γ = 0.05, βs = 10−10, βu = 0.1, m = 8. In the left panel a), α = 7.6215; three
solutions are shown: the left one starting from (0.5, 0.05) converges to (0, η) with a
monotone decrease of x(t), while y(t) remains very close to η; the two other solutions,
starting from (0.7, η) and (0.8, η) converge to (0, η) after an initial increase (rather
different between them) of x(t). in the right panel b) α = 8.5; two solutions are
shown, one (dotted line) starting from (0.8, η), the other one (solid line) starting
from (0.5, η): both appear to converge to a limit cycle (basically what appears to
be the middle curve) which, for a part, lies very close to the y-axis.

spontaneous production of effective immune cells), the bifurcation diagram is

simpler with a supercritical bifurcation of the pathogen–free equilibrium at α0

and a unique positive equilibrium for α > α0.

5 Examples of behaviour of the model

First of all, we show how different behaviours of the system may occur by

changing the inoculum size or parameters of the model, reflecting individual

variation.

In Fig. 5 we show some examples of the time course of infections.

The solid lines correspond to three different initial sizes of the inoculum: it

15



a) b)

0,0 0,1 0,2 0,3

 10 - 3

 100

 103

 106

 109

 1012

t
0 0,2 0,4 0,6 0,8 1,0

y

0

500

1.000

1.500

Fig. 5. Examples of the time course of solutions of the system (6). In the left panel
a), pathogen load x(t) in logarithmic scale; in the right panel b), immunity level
y(t). The solid lines are obtained, for different initial conditions (0.4, η), (1, η) and
(100, η), with parameter values η = 0.05, γ = 0.02, βs = 10−8, βu = 2, m = 200,
α = 100. The dotted lines are obtained, from the same initial conditions, with
βu = 1.5, γ = 0.015, βs = 7.5 · 10−9; the one starting from (0.4, η) is identical
to (and hidden from) the solid line. The dashed lines are obtained, from the same
initial conditions, with m = 150; the one starting form (100, η) is identical to (and
hidden from) the solid line.

can be seen that, all other things beings the same, this may lead to a sub-

threshold infection, or to a normal infection later controlled by immunity, or to

a catastrophic infection corresponding, from the mathematical point of view,

to a diverging solution, and, from the biological point of view, to a potentially

lethal event.

The dotted lines corresponds to the same initial inocula in an individual whose

immune cells replicate faster; this corresponds to a higher k in terms of the

original parameters, hence smaller βs, βu and γ for adimensional parameters.

In this case, the infection is always controlled.

The dashed lines simulate the same initial inocula in an individual with a lower

level of aspecific response (M); now also the smaller inoculum size leads to a
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Fig. 6. Simulation of vaccination with system (6). In the left panel a), pathogen load
x(t) in logarithmic scale; in the right panel b), immunity level y(t). The solid line
is obtained with initial condition (1, η) and parameter values η = 0.05, γ = 0.02,
βs = 10−8, βu = 2, m = 200, α = 100. The dotted lines simulate vaccination and
are obtained with α = 20 and initial conditions (1, η) and (5, η).

normal infection, while, in the other cases, the simulations are very similar to

the reference ones (solid lines).

We then consider what could be the effect of vaccination, modelled in an

extremely simple way. We assume that vaccination is realized by inoculating

an attenuated pathogen in the sense that its replication rate α is lower than

the wild type; in all other respects, the attenuated pathogen is identical to the

wild-type, so that the immune response is the same.

In Fig. 6, we compare the time courses of a normal infection with that of

a vaccination. In the example, when the vaccine inoculum is too small (in

the Figure, a same size inoculum of the wild type leads to an infection), the

pathogen content decreases immediately and no effective immune response

mounts. With a larger inoculum, one obtains an attenuated infection (the

peak value of x(t) is several orders of magnitude smaller than in a normal in-
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fection) and an immune response that, while lower than in the case of a normal

infection, is still protective. Thus the model can reproduce both vaccination

failures (the threshold for the initial inoculum depends on the other param-

eters m, βu, . . . that may be different among individuals), and the protective

effect of vaccination.

a) b)
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Fig. 7. Reinfections in naturally infected and vaccinated individuals. In the left
panel a), pathogen load x(t) in logarithmic scale; in the right panel b), immunity
level y(t). The solid line corresponds to a natural infection and is the same as in
Fig. 6. The dotted line corresponds to a vaccinated individual and is the same as
in Fig. 6 with initial condition (5, η). The dashed lines correspond to reinfections
(at t = 1, 2 or 3) of the naturally infected individual (these cannot be seen in
panel b), since almost no change occurs in immunity level). The dot-and-dash lines
correspond to reinfections (at t = 1, 2 or 3) of the vaccinated individual. In the
reinfections α = 100, like in the natural infection.

The protective effect can be seen in Fig. 7. There we show the results of some

simulations in which after an initial vaccination or normal infection, the indi-

vidual is reinfected, at fixed times after the initial infection, with the normal

pathogen. It can be seen that when the second infection occurs not too long

after the first one (in the Figure at t = 1), whether it is vaccination or natural

infection, the new infection is immediately cleared and the immunity is not

boosted. Waiting a longer time for the second infection (t = 2 or t = 3), still
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there are no effects in the case of a naturally infected individuals; however,

after a vaccination, a mild infection occurs (similar to that occurring immedi-

ately after vaccination) with a boosting of the immune response; in this case,

immunity level actually becomes higher than in the case of a naturally immu-

nized individual. If the second infection occurs long after initial vaccination

(not shown in the figures), without any exposure to the pathogen in the mean

time, then immunity has dropped so low that the new infection is similar to

that occurring in a naive individual. A similar reinfection in a naturally in-

fected individual would instead lead to mild infection, and a boosting of the

infection.

It seems that this simple model is able to mimic several of the phenomena

occurring in vaccinations, from failures, to waning immunity with time, and

boosting of immunity through reexposures at the correct schedules. It may

also occur that while moderate reexposures lead to very mild reinfections and

boosting of immunity, extreme reexposures lead to significant reinfections, as

documented for measles [18]. Models of this type could then be useful for an

appropriate design of revaccination schedules, that would depend on how much

the pathogen is circulating in the population. In fact, the model, at least for the

parameter values used in this simulation, predicts that an effective immunity

can be maintained as long as an individual is confronted, from time to time,

with the pathogen. As natural exposures become rare, then revaccinations

need be more frequent.

There is a long-standing debate on the mechanisms maintaining immunity

in individuals, whether it is due to very long-lived memory cells, or residual

antigenic stimulation [19,20]. Varying the parameter values, this model can

support any of these. In terms of the original parameters, 1/δ is the average
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duration of a B-particle; if this time is of the order of magnitude of human

life, then no other mechanisms are needed. On the other hand, with a larger δ,

maintenance of immunity is compatible either with convergence of the system

to a stable positive equilibrium (phenomenon that seems to be possible only

when α is moderately large, i.e. with slowly replicating pathogens) or with not

too infrequent reexposures to the pathogen.

References

[1] J. Dushoff, Incorporating immunological ideas in epidemiological models, J.

theor. Biol. 180 (1996) 181–187.

[2] B. Hellriegel, Immunoepidemiology – bridging the gap between immunology

and epidemiology, Trends Parasitol. 17 (2001) 102.

[3] M. Martcheva, S. Pilyugin, An epidemic model structured by host immunity,

J. Biol. Systems 14 (2006) 185–203.

[4] M. Gilchrist, A. Sasaki, Modeling host-parasite coevolution, J. theor. Biol. 218

(2002) 289–308.
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A Boundedness of solutions

We prove here Proposition 2.

Let us prove the boundedness of trajectories when α < 1
γ
− 1 [or γ = 0 or

βs = 0]; we show that for each x0 > 0, the solution of (6) starting from (x0, η)

is trapped in a bounded invariant set; hence the conclusion follows.

Choose δ such α < 1
γ
− 1 − δ and take M ≥ max{x0,

1
γ
− δ

γδ
} and such that

g(M) > η. Hence, for each x ≥ M

x

1 + γx
≥

1

γ
− δ and g(x) > 0. (A.1)

Take the solution of (6) starting from (M, η) and assume that it remains for

all t > 0 in the set {y < g(x)}. We would then have ẋ > 0 and ẏ > 0 for all

t > 0, and we could write y(t) = h(x(t)) for an increasing function h.

Then

h′(x) =
h(x)

(

x
1+γx

− 1
)

+ η

x
(

α − h(x)
1+βsx

− m
1+βux

) ≥
h(x)

(

1
γ
− δ − 1

)

αx
(A.2)

using (A.1). By a comparison principle, we obtain

h(x) ≥ η
(

x

M

)

1
γ −δ−1

α

∀ x ≥ M. (A.3)

Since, if βs > 0, g(x) grows linearly, while h(x) grows superlinearly, necessarily
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there must exist xM > x such that h(xM) = g(xM) and h(x) < g(x) for

M < x < xM . This means that the solution of (6) starting from (x0, η) enters

the region {y > g(x)} where ẋ < 0. This will be the first part of the boundary

of the invariant region.

If βs = 0, one needs only choose δ such that 1
γ
−1− δ > 0; the same argument

would then show that h(x) grows with a positive exponent, while g(x) tends to

a constant, again proving the existence of xM > x such that h(xM ) = g(xM).

Finally, if γ = 0, one has to choose M ≥ max{x0, α + 1 + δ} with δ > 0 and

repeat the same argument.

Consider now the solution of (6) starting from (xM , yM = g(xM)) for any

xM > 1
1−γ

. Initially we have ẋ < 0 and ẏ > 0, but we prove that eventually

the trajectory enters the region C = {x < 1
1−γ

, y > f(x)} where ẏ < 0.

Assume the opposite. Then, since y(t) is monotone increasing, and no equilib-

ria exist with y > yM , necessarily we have lim
t→τ−

y(t) = +∞, where [0, τ) is the

maximal interval of existence of solutions. Since x(t) is monotone decreasing,

we have lim
t→τ−

x(t) = xm. Since we have assumed that (x(t), y(t)) never enters

the region C, necessarily (see Fig. 1) we have xm ≥ 1
1−γ

.

First of all, we show that τ = +∞. In fact, if γ > 0, we have ẏ ≤
(

1
γ
− 1

)

y;

this implies an exponential bound for y(t), thus global existence. If γ = 0, we

have ẋ ≤ αx − xy
1+βsxM

so that

d

dt
((1 + βsxM )x(t) + y(t)) ≤ α(1 + βsxM)x(t) − y(t) + η

≤ α ((1 + βsxM)x(t) + y(t)) + η

which again yields an exponential bound for ((1 + βsxM)x(t) + y(t)), thus
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global existence.

Now, let T be such that y(T ) > K with K ≥ yM to be chosen later. From (6),

we then obtain, for t > T ,

ẋ ≤ αx −
K

1 − γ + βs

−
m

1 − γ + βu

.

The comparison principle then implies

x(t) ≤ eαt

(

xM −

(

K

1 − γ + βs

+
m

1 − γ + βu

)

1

α

)

+

(

K

1 − γ + βs

+
m

1 − γ + βu

)

1

α
.

(A.4)

If K has been chosen large enough that the coefficient of eαt in (A.4) is nega-

tive, we have lim
t→∞

x(t) = −∞, reaching a contradiction.

There exists then a point (xC , yC) with xC < 1
1−γ

and yC = f(xC) where the

trajectory enters the region C.

The boundaries of the bounded invariant set B are then the two arcs of tra-

jectory from (M, η) to (xM , g(xM)), and then from (xM , g(xM)) to (xC , f(xC)),

and the segments {(x, f(xC)), x ∈ [0, xC ]}, {(0, y), y ∈ [η, f(xC)]}, {(x, η), x ∈

[0, M ]}.

The solution of (6) starting from (x0, η) [where x0 > 0 is arbitrary] remains

inside B, hence is bounded.

Assume now α > 1
γ
− 1 and βs > 0. Take the solution of (6) starting from

(x0, η) with x0 > 0 to be chosen later. From the second of (6), we obtain

y(t) ≤
η

1 − γ
e(

1

γ
−1)t. (A.5)
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Then we have

ẋ ≥ αx −
η

βs(1 − γ)
e(

1

γ
−1)t −

m

βu

. (A.6)

which implies

x(t) ≥



x0 −
η

(1 − γ)βs

(

α − 1
γ

+ 1
) −

m

αβu



 eαt. (A.7)

If x0 is chosen large enough that the coefficient of eαt in (A.7) is positive, (A.5)

and (A.7) together imply

y(t) ≤
η

1 − γ







x(t)

x0 −
η

(1−γ)βs(α− 1

γ
+1)

− m
αβu







1
γ −1

α

. (A.8)

Since 1
γ
−1 < α and βs > 0, this inequality implies, for x0 large enough, y(t) <

g(x(t)) so that we obtain a solution lying at all times in the set {y < g(x)}

so that ẋ > 0 and ẏ > 0. Furthermore, the inequality ẋ ≤ αx implies global

existence, and consequently from (A.7) x(t) → +∞ and

lim
t→∞

x(t) − lim
t→∞

y(t) = +∞.
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