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Abstract

Briggs et al. (1993) introduced a host-parasitoid model for the dynamics
of a system with two parasitoids that attack different juvenile stages of a
common host. Their main result was that coexistence of the parasitoids is
only possible when there is sufficient variability in the maturation delays of
the host juvenile stages. Here we analyse the phenomenon of coexistence in
that model more deeply. We show that with some distribution families for the
maturation delays, the coexistence equilibrium is unique, while with other
distributions multiple coexistence equilibria can be found. In particular we
find that stable coexistence does not necessarily require mutual invasibility.
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1. Introduction1

It is known that parasitoid species of the same host can coexist (Force, 1970;2

Price, 1970; Harvey et al., 2009). This observation seems to contradict a3

principle in ecology which predicts that competing species cannot coexist on4

the same limiting resource (Gause and Witt, 1935), though it has been shown5
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that the principle holds under very stringent equilibrium conditions (Ches-6

son and Case, 1986) and that competitors can coexist on the same biological7

resource along periodic solutions (Hsu et al., 1977; Armstrong and McGehee,8

1980). Parasitoid species are a particularly interesting case, as various mech-9

anisms that can promote parasitoid coexistence on the same host have been10

suggested (Price, 1970; Lane et al., 2006; Hackett-Jones et al., 2009). Briggs11

(1993) started to investigate under which conditions parasitoids can coexist12

when they attack different juvenile stages of a common host. This investi-13

gation was continued by Briggs et al. (1993), who found that in their model14

coexistence at equilibrium is possible only when there is sufficient variability15

in the maturation delays of the juvenile stages. They suggested that when16

the variability is large enough, different host individuals can be interpreted17

as different resources: individuals with a relatively long egg phase support18

the egg parasitoid, and individuals with a relatively long larva phase support19

the larva parasitoid. In the present paper we re-analyse the model by Briggs20

et al. (1993) and find more complex patterns than those already identified:21

there may be multiple coexistence equilibria, and, contrary to conventional22

wisdom, stable coexistence does not require mutual invasibility. The model23

is presented in Section 2. In Sections 3, 4 and 5 we formulate the original24

results in our somewhat different notation and in Section 6 show that co-25

existence equilibria are not unique for many distributions of the maturation26

delays. Finally, in Section 7 we set our results in the context of other works,27

discuss their relevance for biological pest control, and propose questions for28

further investigation. A general introduction to parasitoid-host systems can29

be found, for instance, in the text book by Godfray (1994).30

2. The model31

The model describes a host with two juvenile stages E and L, and an adult32

stage A. We refer to the first juvenile stage as eggs and to the second33

juvenile stage as larvae but they can also represent other developmental34

stages as pupae or different instars. The egg stage is attacked by an egg35

parasitoid (whose density is denoted by P ) while the larva stage is attacked36

by a larva parasitoid (density denoted by Q) with attack rates aP and aQ37

respectively. Non-infected host juveniles have random maturation delays38

which are distributed with probability density functions wE and wL. Infected39

hosts do not progress to the next stage but give rise to new parasitoids a40

constant time TJP or TJQ after the infection. Unlike the original paper, we41
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do not explicitly introduce survival probabilities for the juvenile parasitoids,42

since these can be absorbed in the parameters cP and cQ for the expected43

number of parasitoids emerging from an infected host. All other host and44

parasitoid stages have constant (background) death rates dE , dL, dA, dP and45

dQ. Adult hosts have a life time fecundity ρ (so ρdA is the rate with which46

an adult produces offspring).47

The population dynamics is described by delay differential equations shown48

below. We adopt the notation used in the original paper but extend it when49

needed. For simplicity, the term maturing is used for eggs transforming to50

larvae as well as for larvae transforming to adults, although for eggs the51

term hatching might be more appropriate. The balance equations for the52

population densities are53
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dE(t)
dt

= RE(t)−ME(t)− aPP (t)E(t)− dEE(t)

dL(t)
dt

= ME(t)−ML(t)− aQQ(t)L(t)− dLL(t)

dA(t)
dt

= ML(t)− dAA(t)

dP (t)
dt

= aP cPE(t− TJP )P (t− TJP )− dPP (t)

dQ(t)
dt

= aQcQL(t− TJQ)Q(t− TJQ)− dQQ(t)

(1)

where55

56

RE(t) = ρdAA(t) host egg recruitment rate

ME(t) =
∫

∞

0
RE(t− xE)SE(xE , t)wE(xE)dxE host egg maturation rate

= host larva recruitment
rate

ML(t) =
∫

∞

0
ME(t− xL)SL(xL, t)wL(xL)dxL host larva maturation rate

= host adult recruitment
rate

with

SE(xE , t) = exp
(

−
∫ t

t−xE
(aPP (y) + dE)dy

)

probability for host eggs to
survive from time t−xE to
t

SL(xL, t) = exp
(

−
∫ t

t−xL
(aQQ(y) + dL)dy

)

probability for host larvae
to survive from time t−xL

to t

57

3



58

and59

60

parameter description
ρ total lifetime fecundity of host adults
dE background mortality rate of host eggs
dL background mortality rate of host larvae
dA background mortality rate of host adults
dP background mortality rate of egg parasitoids
dQ background mortality rate of larva parasitoids
aP egg parasitoid attack rate
aQ larva parasitoid attack rate
cP expected number of egg parasitoids emerging from infected egg
cQ expected number of larva parasitoids emerging from infected larva
TJP duration of juvenile egg parasitoid stage
TJQ duration of juvenile larva parasitoid stage

61

62

and63

function description
wE probability density function for host egg maturation delay
wL probability density function for host larva maturation delay

64

65

66

3. Preliminaries67

In order to investigate equilibrium states, we introduce some quantities that68

depend on constant parasitoid densities P and Q. Note first that eggs and69

larvae can have three different fates: they can die due to the background70

death rates dE and dL, they can be successfully attacked by parasitoids or71

they can progress to the next stage. We first state the formulae for the72

transition probabilities between the host stages and the expected durations73

in the different stages (for the full computations see Appendix A).74

The probability that a freshly emerged egg hatches into a larva is75

Π1(P ) =

∫

∞

0

wE(τ) e
−(aPP+dE)τ dτ (2)

and the probability that a freshly hatched larva emerges as an adult is76

Π2(Q) =

∫

∞

0

wL(τ) e
−(aQQ+dL)τ dτ. (3)
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As shown in Appendix A.2, the expected duration of the egg stage is77

Γ1(P ) =
1−Π1(P )

aPP + dE
, (4)

the expected duration of the larva stage (given that this stage is reached) is78

Γ2(Q) =
1−Π2(Q)

aQQ + dL
, (5)

and the expected duration of the adult stage (given that this stage is reached)79

is80

Γ3 =
1

dA
. (6)

We now can state the following relations, valid when the related population81

densities are constant:82

The rate of eggs emerging, given constant adult density A, is by definition83

RE = ρdAA. (7)

The constant egg density E is the product of the rate of eggs emerging and84

the expected duration of the egg stage (to verify set dE
dt

= 0),85

E = RE Γ1(P ). (8)

The constant larva density L is the product of three factors, viz., the rate86

of eggs emerging, the probability for an egg to mature to a larva and the87

expected duration of the larva stage, given that it is reached (to verify set88

dL
dt

= 0),89

L = RE Π1(P )Γ2(Q). (9)

The constant adult density A is the product of four factors, viz., the rate of90

eggs emerging, the probability for an egg to mature to a larva, the probability91

for a larva to mature to an adult and the expected life length of an adult (to92

verify set dA
dt

= 0),93

A = RE Π1(P )Π2(Q)Γ3. (10)

The average number of offspring from a freshly laid egg (the basic reproduc-94

tion number of the host) is the product of the average output of an adult ρ95

and the probability for an egg to mature to an adult,96

R0 = ρ Π1(P ) Π2(Q). (11)

5



At a nontrivial equilibrium the basic reproduction number R0 equals one,97

as can be seen by plugging the definition of RE into equation (10). The98

zero growth condition for host eggs (8) and larvae (9) can be combined by99

eliminating RE . This yields100

Π1(P )Γ2(Q)

Γ1(P )
=

L

E
. (12)

4. Equilibrium states101

4.1. When only the egg parasitoid is present102

For the case that only the egg parasitoid is present, its equilibrium density103

P ∗ can be determined by plugging Q = 0 into the basic reproduction number104

R0, which is equal to 1 at equilibrium, i.e. by requiring105

106

ρ Π1(P
∗) Π2(0) = 1. (13)

Assuming that R0 > 1 for P = 0 and Q = 0, this equation has a unique root107

for P ∗ since R0 approaches 0 strictly monotonically with increasing P .108

The equilibrium state for the egg density is determined by the requirement109

of zero growth rate for (non-trivial) P . This, by setting dP (t)/dt = 0 and110

assuming constant population densities, leads to111

E∗

P =
dP

aP cP
. (14)

The equilibrium larva density L∗

P in presence of only the egg parasitoid can112

be calculated from the relation (12),113

L∗

P = E∗

P

Π1(P
∗)Γ2(0)

Γ1(P ∗)
. (15)

The host adult density can be obtained for all equilibrium systems by com-114

bining (7) and (8).115

4.2. When only the larva parasitoid is present116

In the same way as for the egg parasitoid, we can derive the equilibrium den-117

sities for the case that only the larva parasitoid is present. The equilibrium118

larva parasitoid density Q∗ is determined through the equation119

ρ Π1(0) Π2(Q
∗) = 1 (16)
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and again this equilibrium density is unique. The equilibrium larva density120

is121

L∗

Q =
dQ

aQcQ
, (17)

and the equilibrium egg density is122

E∗

Q = L∗

Q

Γ1(0)

Π1(0)Γ2(Q∗)
. (18)

4.3. When both parasitoids are present123

According to equation (11) the host adult density is in equilibrium when the124

parasitoid densities satisfy125

Q = Π−1
2

(

1

ρ Π1(P )

)

(19)

where Π−1
2 is the inverse function of Π2. Plugging (19) into (12) yields a126

condition for all host stages to be in equilibrium127

f(P ) =
L

E
(20)

where f : [0, P ∗] → R
+ is defined by128

f(P ) =
Π1(P )

Γ1(P )
Γ2

(

Π−1
2

(

1

ρ Π1(P )

))

. (21)

When both parasitoids coexist, the equilibrium egg and larva densities are129

determined by the requirement of zero growth rate for the egg and larva130

parasitoid respectively. Hence they are given by E∗

P and L∗

Q, and thus the131

egg parasitoid coexistence equilibrium P ∗∗ is determined by the condition132

f(P ∗∗) =
L∗

Q

E∗

P

. (22)

The corresponding larva parasitoid density Q∗∗ can be obtained by equation133

(19).134

Note that in the same way one can derive an equivalent function g(Q) = L/E135
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which determines coexistence equilibria by g(Q∗∗) =
L∗

Q

E∗

P

, where136

g(Q) =
Π1

(

Π−1
1

(

1
ρ Π2(Q)

))

Γ1

(

Π−1
1

(

1
ρ Π2(Q)

))Γ2(Q)

=
Γ2(Q)

Π2(Q)

1

ρ Γ1

(

Π−1
1

(

1
ρ Π2(Q)

))

(23)

with Π−1
1 being the inverse function of Π1. All further analysis could be car-137

ried out with either f or g but for simplicity we stick with the function f .138

Turning back to the function f , we see that the shape of the function con-139

tains information on the multiplicity of coexistence equilibria. According to140

equation (22), multiple coexistence equilibria cannot arise if f is strictly141

monotonic. If on the other hand for some parameters f is not mono-142

tonic, we can always find values of the parameters cP , cQ, dP or dQ that143

give rise to multiple coexistence equilibria by shifting the critical horizontal144

L∗

Q/E
∗

P = dQaP cP/dPaQcQ until the graph of the function f (which does not145

depend on those parameters) is intersected multiple times. Each intersec-146

tion yields a coexistence equilibrium. Similarly, the critical horizontal can147

be shifted using those parameters until there are no coexistence equilibria.148

5. Invasibility of stable equilibria149

When in the absence of parasitoids R0 > 1, either parasitoid can establish150

a population. Often, a stable host-parasitoid equilibrium will be reached151

with R0 set at 1 (Murdoch et al., 1987) and we follow Briggs et al. (1993) in152

examining when this equilibrium can be invaded by the other parasitoid. A153

case where the host and parasitoid populations settle into a periodic solution154

is examined numerically in the next Section.155

It is not difficult to show that a stable equilibrium population with only the156

larva parasitoid can be invaded by the egg parasitoid when the egg parasitoid157

alone reduces the egg density more than the larva parasitoid alone, that is158

when159

E∗

P < E∗

Q. (24)

To demonstrate this, we compute the Malthusian parameter λ = λP (E) for160

the egg parasitoid at constant egg density E. Namely, we linearise system161
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(1) around the equilibrium, obtaining162

dP (t)

dt
= aP cPEP (t− TJP )− dPP (t) (25)

where E = E∗

Q. We then assume163

P (t) = eλtP (0) (26)

and obtain164

λP (t) = aP cPEP (t)e−λTJP − dPP (t)

λ = EaP cP e
−λTJP − dP .

(27)

The egg parasitoid can invade a stable equilibrium community of the larva165

parasitoid and the host when this equation has a positive real root for166

E = E∗

Q, that is λP (E
∗

Q) > 0. The claim that this requires E∗

P < E∗

Q167

follows because the unique real root λP (E) increases strictly monotonically168

with E and λP (E
∗

P ) = 0. (Note that we do not have to consider complex169

roots for λ since their real parts cannot exceed the real root.)170

In the same way it can be seen that the larva parasitoid can invade a stable171

equilibrium population with only the egg parasitoid when172

L∗

Q < L∗

P . (28)

We speak of mutual invasibility of stable equilibria when173

E∗

P < E∗

Q and L∗

Q < L∗

P . (29)

The value of the function f defined in (21) at the boundary of its domain, rel-174

ative to the right hand side of (22), turns out to be related to the invasibility175

conditions. Indeed,176

f(0) =
Π1(0)

Γ1(0)
Γ2

(

Π−1
2

(

1

ρ Π1(0)

))

=
Π1(0)

Γ1(0)
Γ2

(

Π−1
2 (Π2(Q

∗))
)

=
Π1(0)

Γ1(0)
Γ2 (Q

∗)

=
L∗

Q

E∗

Q

(30)
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Figure 1: The graph of the function f which intersects the level L∗

Q/E
∗

P when the egg
parasitoid density corresponds to a coexistence equilibrium. The maturation delays are
distributed with two discrete values each (see Appendix B.2). Parameter values are
TE1

= 0.2, TE2
= 1.35, TL1

= 0.75, TL2
= 5, rE = 0.5, rL = 0.3, aP = 2, aQ = 0.2,

dE = 0, dL = 0, ρ = 500, dP = 8, dQ = 0.175, cP = 0.5 and cQ = 0.5

and177

f(P ∗) =
Π1(P

∗)

Γ1(P ∗)
Γ2

(

Π−1
2

(

1

ρ Π1(P ∗)

))

=
Π1(P

∗)

Γ1(P ∗)
Γ2

(

Π−1
2 (Π2(0))

)

=
Π1(P

∗)

Γ1(P ∗)
Γ2 (0)

=
L∗

P

E∗

P

,

(31)

which implies that the egg parasitoid can invade a stable equilibrium178

with the larva parasitoid alone when f(0) < L∗

Q/E
∗

P and the larva para-179

sitoid can invade a stable equilibrium with the egg parasitoid alone when180

f(P ∗) > L∗

Q/E
∗

P .181

182

6. Applying distributions for the maturation delays183

We apply several distributions for the maturation delays in order to analyze184

their influence on the multiplicity of coexistence equilibria. Among those185

are the constant-duration distribution, (shifted) exponential distribution and186

(shifted) gamma distribution, which have been introduced in the original pa-187

per of Briggs et al. (1993). Here the term ’shifted’ refers to including minimal188
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values for the maturation delays. Additionally we introduce a two-value dis-189

tribution where the maturation delays assume one of two discrete values with190

certain probabilities.191

It turns out that, among these distributions, only the constant-duration and192

the (non-shifted) exponential distribution yield at most one coexistence equi-193

librium. For those two distributions the function f is monotonic and therefore194

the critical horizontal L∗

Q/E
∗

P can be crossed at most once. Elementary rep-195

resentations for f in those cases are shown in Appendix B. For the case of196

constant maturation delays, f is decreasing and hence there is a coexistence197

equilibrium only if f(0) > L∗

Q/E
∗

P > f(P ∗), implying that neither parasitoid198

can invade a stable equilibrium of the other parasitoid and the host. For199

the case of exponentially distributed maturation delays, f is increasing and200

hence, in the other way around, there must be mutual invasibility of stable201

equilibria for a coexistence equilibrium to exist.202

For all the other distributions (two-value distribution, shifted exponential203

distribution and (normal or shifted) gamma distribution), we could numer-204

ically find parameters so that the graph of f crosses the critical horizontal205

line multiple times, giving rise to multiple equilibria. Fig. 1 shows an exam-206

ple where the graph of f crosses the critical horizontal line four times with207

two-value distributions for the maturation delays (see caption).208

6.1. Simulations and stability209

To see how the system behaves after a small perturbation from an equilib-210

rium, we computed time plots with the software Mathematica shown in Fig.211

2. The plots reveal that coexistence equilibria can be stable or unstable,212

possibly giving rise to oscillations around the equilibrium after perturbation.213

Bifurcation diagrams are shown in Fig. 3. The left panel shows how the214

parameter aP shifts the horizontal in Fig. 1 without changing the function215

f , and thus we can observe how coexistence equilibria appear and disappear216

in pairs when changing the parameter. The right panel shows how the adult217

mortality dA affects stability without changing the equilibrium values (since218

this parameter does not occur in the function f or in the level of the critical219

horizontal line). Low values for dA seem to stabilize some equilibria while220

high values for dA appear to destabilize all equilibria.221

We further analyzed the dynamics for low values of host adult death rate222

dA. We show some simulations for that case in the (P,Q)-plane in Fig.223

4. There we see that the population densities lie on the curve of equation224
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Figure 2: Time plots of population dynamics after small perturbations from equilibrium
densities. The initial densities for t ≤ 0 are constant and correspond to perturbations from
the equilibrium densities indicated by the first (I), second (II), third (III) and forth (IV)
intersection of the graph of f with the critical horizontal in Fig. 1. The perturbations
consist of increasing all equilibrium densities by 5%. Note that in plot (IV) the same
attractor as in plot (III) seems to be approached. Distributions and parameter values are
the same as in Fig. 1. Additionally TJP = 1, TJQ = 1 and dA = 0.3

Π1(P )
Γ2(Q)

Γ1(P )
=

L∗

Q

E∗

P

and move in a direction depending on the relative po-225

sition of this curve and the curve ρΠ1(P )Π2(Q) = 1. This can be justified226

through a time-scale argument that we just sketch here, leaving details to227

future work. For the argument note that A(t) is a slow variable when dA228

is low, what can be seen from the models definition (1); thus in the fast229

time-scale E(t), L(t), P (t) and Q(t) will evolve under a constant value for230

the rate of eggs emerging, see equation (7). Numerical evidence suggests231

that this reduced system always quickly converges to its (quasi)-equilibrium,232

where E = E∗

P , L = L∗

Q and equations (8) and (9) hold, corresponding to233

the solid curve in the (P,Q)-plane in Fig. 4. Thus, on the slow time-scale,234
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Figure 3: Bifurcation diagrams showing the equilibrium values for both parasitoid species.
The upper vertical axis represents values for P and the lower vertical axis represents values
for Q. The outermost lines represent equilibria with only one parasitoid species while the
inner equilibria are true coexistence equilibria. Values for P and Q corresponding to the
same coexistence equilibrium are drawn with the same color in the online version of the
article. Stability is indicated by solid (stable) and dashed (unstable) lines. For the stability
analysis the eigenvalues of the characteristic equation were calculated with the MATLAB
package eigAM/eigTMN by Breda et al. (2014). Parameter values are the same as in Fig.
1 and Fig. 2 (except axis parameters)

A(t) changes according to the third equation of the system (1) with all other235

state variables at the quasi-equilibrium. It can be easily verified that A(t)236

will increase or decrease according to whether the basic reproduction num-237

ber R0 from equation (11) is greater or smaller than 1, thus according to238

whether (P,Q) is above or below the dashed curve in Fig. 4. As at the quasi-239

equilibrium A and P are related by relation (8) with E = E∗

P , an increase240

[decrease] of A(t) corresponds to an increase [decrease] of P (t). This explains241

why the dynamics in the (P,Q)-plane is towards the right when the dashed242

curve is above the solid curve (R0 > 1) and towards the left when the dashed243

curve is below. Since the intersections between the two curves correspond244

to values of (P,Q) where all state variables are at equilibrium, the previous245

graphical argument shows that, in the limit of dA → 0, an equilibrium is246

stable when the dashed curve crosses the solid curve from above, while it is247

unstable when the curves cross in the opposite way.248

These findings can be transfered to the shape of the function f(P ). Indeed,249

it can be easily verified that the solid curve is below the dashed curve if250

and only if f(P ) is below L∗

Q/E
∗

P . Therefore the findings above imply that251

coexistence equilibria are stable, for dA sufficiently small, when f ′(P ∗∗) > 0,252
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Figure 4: Parasitoid phase plane with time dynamics. Initial population densities (for
t ≤ 0) correspond to the second coexistence equilibrium from left in Fig. 1. Perturbation
is introduced via the host adult densities, which are respectively to its equilibrium value
decreased by 1% in the left panel and increased by 1% in the right panel. Host adult
mortality rate is very low, dA = 0.001. All other parameter values are as in Fig. 1 and 2

while they are unstable when f ′(P ∗∗) < 0. The second statement appears to253

be true for all dA > 0 but we give a formal proof only for the scenario with254

constant maturation delays in Appendix C.2.255

Further investigations of invasibility are illustrated with time plots in Fig. 5,256

where the larva parasitoid is introduced at very low density into an equilib-257

rium system of egg parasitoid and host. This numerical example has impor-258

tant implications concerning invasion and coexistence which go beyond what259

was found by Briggs et al. (1993). One point is that the invasibility criteria260

stated in Section 5 do hold only for constant equilibria. If a single-parasitoid261

equilibrium is unstable with respect to the interaction of this parasitoid and262

the host, it has no sense to investigate its invasibility by the other parasitoid.263

Instead one should (numerically) find the single parasitoid-host attractor and264

investigate its invasibility (Metz et al., 1992). One may actually do this in265

one go by using the introduction of the second parasitoid as a way to perturb266

the unstable equilibrium as done in Fig. 5. As this figure reveals, oscillations267

may facilitate successful invasion in the sense that the second parasitoid is268

successful when the single parasitoid equilibrium is unstable (dA = 0.3),269

while being unsuccessful in case it is stable (dA = 0.05) since L∗

P < L∗

Q. By270

14



E

L

A

P

Q

100 200 300 400
t

10

20

30

40

50

(a) For dA = 0.3 the equilibrium of host
and egg parasitoid is unstable and the
larva parasitoid can invade through os-
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(b) For dA = 0.05 the equilibrium of
host and egg parasitoid is stable and the
larva parasitoid cannot invade

Figure 5: Time plots of population dynamics after introducing the larva parasitoid into
an equilibrium system of egg parasitoid and host. The system is started with constant
population densities for t ≤ 0 corresponding to the equilibrium densities of egg parasitoid
and host with additional a low density Q = 0.01 of the larva parasitoid. Distributions and
parameter values are the same as in Fig. 1 and 2 with exception of a lower value for dA in
the right panel

combining Fig. 5b with the right panel of Fig. 3 another conclusion emerges:271

non-invasibility of a stable single-parasitoid equilibrium does not exclude the272

possibility of stable equilibrium coexistence of the two parasitoids (indeed,273

for dA = 0.05 we observe in Fig. 3 that simultaneously the equilibrium with274

only the egg parasitoid, and two coexistence equilibria are stable).275

276

7. Discussion277

We found multiple (non-trivial) coexistence equilibria in a model for the278

population dynamics of two parasitoids attacking different juvenile stages279

of a common host. The model was introduced by Briggs et al. (1993) and280

it involves distributed maturation delays for the host juvenile stages. We281

have shown that, depending on the distributions of the maturation delays,282

multiple coexistence equilibria can arise. To our knowledge, this is the first283

documented example of multiple coexistence equilibria in a parasitoid-host284

model, as well as the first example for the multiplicity of coexistence equi-285

libria to depend on the distribution of maturation delays.286
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Non steady-state attractors in parasitoid-host systems, in contrast, have re-287

ceived considerable attention before. Already the dynamics of the classical288

discrete-time model by Nicholson and Bailey (1935) are known to be os-289

cillatory: one or both species go extinct after diverging oscillations around290

the unstable coexistence equilibrium. In a continuous-time parasitoid-host291

model by Murdoch et al. (1987), stability of a steady-state coexistence at-292

tractor can be facilitated by an invulnerable host stage. For modifications of293

this model, multiple non steady-state attractors have been found by Murdoch294

et al. (1992, 1997), Briggs (1993) and Briggs et al. (1999). Particularly Briggs295

(1993) shows that such non steady-state attractors can lead to parasitoid co-296

existence in situations where no stable coexistence equilibrium is predicted.297

Further Sieber and Hilker (2011) report multiple (non-)equilibrium attractors298

in a single host population that is exploited by microparasites and predators.299

Beyond that, there is a well-developed body of theory on coexistence in vari-300

able environments (deterministic and stochastic), see for example the works301

by Abrams (1984), Chesson (1994) and Li et al. (2016). Occurrence of oscil-302

lations in real parasitoid populations is documented by Godfray and Hassell303

(1989), who offer a review on oscillations of host parasitoid systems in the304

tropics and corresponding discrete and continuous models.305

In our model we found that equilibria can have different properties. Sin-306

gle parasitoid equilibria are potentially stable and non-invadable only when307

the host stage of the other parasitoid is reduced more strongly than what308

would be needed by the competitor to sustain. Similarly we found that two-309

parasitoid coexistence equilibria are ”potentially stable” only when increasing310

a parasitoid species reduces its own host stage relatively to its competitors311

host stage when the competing parasitoid species is chosen accordingly so312

that the host stays at equilibrium. Coexistence equilibria for which this313

is not the case turned out to be always unstable. This can be interpreted314

as a manifestation of the principle that coexistence of competitors can be315

possible only when intraspecific competition is stronger than interspecific316

competition, see for example the review by Chesson (2000). For the poten-317

tially stable equilibria we found that stability can be always altered with the318

parameter dA of host adult mortality (which does not change the equilibrium319

values due to the way the model is parameterized). Especially, we found that320

low values for dA generally stabilize potentially stable equilibria. In the other321

way around we found that high values for dA are always destabilizing. This is322

similar to the observations of Murdoch et al. (1987), who found for a similar323

single-parasitoid model that stable equilibria can exist only when there is a324
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sufficiently long invulnerable adult stage of the host.325

We made several observations concerning invasibility and single-parasitoid326

equilibria in the model. One point is that in the presence of multiple co-327

existence equilibria, stable coexistence can occur without mutual invasibil-328

ity. We described a situation where the parasitoids can coexist although the329

larva parasitoid cannot invade a stable equilibrium of egg parasitoid and host330

(L∗

P < L∗

Q). This is similar to the findings of Buonomo and Cerasuolo (2014)331

in a model for plants and parasites. Our example also shows that host juve-332

nile densities can increase when an additional parasitoid is introduced since333

the equilibrium larva density with the egg parasitoid alone L∗

P is lower than334

the equilibrium larva density L∗

Q when both parasitoids coexist. Analogous335

examples can be found for situations where introducing the egg parasitoid336

increases the equilibrium egg density. These findings differ from those of337

other authors including Briggs (1993) and Briggs et al. (1993), who assume338

that stable coexistence requires mutual invasibility, and conclude that (in339

the absence of other mechanisms such as hyperparasitism) introducing a sec-340

ond parasitoid cannot lead to higher equilibrium densities of host juveniles.341

This is interesting in the light of the discussion whether single or multiple342

parasitoids should be introduced for optimal biological pest control, see for343

example the contributions by Ehler (1990) and Pedersen and Mills (2004).344

Furthermore we found that the invasibility criterion suggested by Briggs et al.345

(1993) is not generally valid when there are multiple coexistence equilibria.346

The original criterion states that a parasitoid species can invade only if its347

growth rate is positive at the equilibrium host density set by the resident348

parasitoid. We found however that if there are multiple coexistence equilib-349

ria, and the residents single-parasitoid equilibrium is not stable, invasion of350

the other parasitoid can take place through oscillations eventually leading to351

coexistence of both parasitoids. This is related to the findings on invasion in352

oscillating conditions by Armstrong and McGehee (1980), Bacaër and Guer-353

naoui (2006), Greenman and Norman (2007) and Bate and Hilker (2013).354

Since in our model such situations occurred only when there are multiple co-355

existence equilibria we conjecture that this is indeed a necessary condition.356

The question remains of when coexistence equilibria can arise generally and357

what is the connection to the maturation delays of the hosts. A literature358

search reveals that the occurrence of multiple equilibria in population models359

is generally connected to some non-linearity or non-monotonicity in the inter-360

action of different species. Evidence for that can be found in several models361

based on ordinary differential equations. Pimenov et al. (2015) find that in a362
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T1 T2 T1 T2 T1 T2

Figure 6: Age distribution of a host juvenile stage subjected to constant parasitism pres-
sure aPP or aQQ equal to 0, 0.2 or 0.4 (from left to right; note that there is no background
death rate). The maturation delay for the stage is distributed by two discrete values T1

and T2 which occur with probabilities r and 1 − r. The area under the curve represents
the expectation value Γi for the time in this stage, while the sum of the lengths of the
vertical bars at the times T1 and T2 represents the probability Πi to reach the next stage.
The ratio Γi/Πi equals approximately 8.8, 9.5 and 7.9 from left to right, and thus first
increases and then decreases with increasing parasitism. Parameter values are: r = 0.35,
T1 = 1, T2 = 12

predator-prey model, multiple coexistence equilibria can arise when the prey363

changes its behavior in dependence of the predator density. Similarly Freeze364

et al. (2014) find multiple coexistence equilibria in a three species model365

where a super predator changes feeding behavior in dependence of its prey366

species densities. Buonomo and Cerasuolo (2014) find multiple coexistence367

equilibria in a model with host plants that react to parasitism in a non-linear368

way.369

We found in our model too that multiple coexistence equilibria can occur370

only when the host larva-egg proportion depends in a non-monotonic way on371

the density of one parasitoid while the other parasitoid density is kept so that372

the host stays at equilibrium. We have seen that this can never happen for373

two important special cases: constant and exponentially distributed matura-374

tion delays. For constant maturation delays, increasing one parasitoid (and375

decreasing the other parasitoid accordingly) increases its own host stage rel-376

atively to the host stage of the competitor, which additionally implies that377

if there is a coexistence equilibrium, it is unstable and neither parasitoid can378

invade a stable population with the other parasitoid. Conversely for expo-379

nentially distributed maturation delays, increasing a parasitoid (and again380

decreasing the other parasitoid accordingly) reduces its host stage relatively381

to the host stage of the competitor, which additionally implies pairwise inva-382

sibility when there is a coexistence equilibrium. For all other distributions we383

investigated, the parasitoid densities can affect the hosts larva-egg proportion384
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in a non-monotonic fashion giving rise to multiple coexistence equilibria. An385

illustration of how this can happen with the two-value distributions we used386

in our numerical examples is shown in Fig. 6. There we show the expected387

duration Γi of a juvenile stage and the probability Πi to reach the next388

stage, both for different densities of the corresponding parasitoid. We see389

that increasing the parasitoid density first decreases Πi heavily because only390

a small part of the hosts with long maturation delay reaches maturation,391

while further increasing the parasitoid density decreases Γi more strongly392

because parasitism still mainly affects hosts with a long maturation delay393

whose contribution to Πi was already low. Such mechanisms can lead to a394

non-monotonic relation between the parasitoid densities and the hosts larva-395

egg proportion, what potentially gives rise to multiple coexistence equilibria.396

Note however that the ratio of a parasitoids host stage and the other par-397

asitoids host stage is according to (21) and (23) not only proportional to398

Γi/Πi but depends also on Γj(Π
−1
j ( 1

ρΠi
)) (where j refers to the other para-399

sitoids host stage); thus this graphical illustration is incomplete, but still, in400

our view, sheds some light on the mechanisms through which the distribution401

of maturation delays affects coexistence equilibria.402

Appendix A. Transition probabilities and expected duration of403

the stages404

Here we derive formulas for the transition probabilities from egg to larva405

Π1(P ) and from larva to adult Π2(Q), and for the expected duration of406

the egg, larva and adult stage, Γ1(P ), Γ2(Q) and Γ3 respectively. The407

calculations are valid for constant parasitoid densities P and Q. We use the408

following notations for the various random variables409

410
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random variable density description
XE wE(τ) time needed for egg matura-

tion
XL wL(τ) time needed for larva matura-

tion
KE (aPP + dE)e

−τ(aPP+dE) time until an egg dies or is in-
fected (when it does not ma-
ture before), distributed ex-
ponentially

KL (aQQ + dL)e
−τ(aQQ+dL) time until a larva dies or is in-

fected (when it does not ma-
ture before), distributed ex-
ponentially

KA dAe
−τdA time until an adult dies, dis-

tributed exponentially

411

412

413

Appendix A.1. Transition probabilities Π1(P ) and Π2(Q)414

When the parasitoid densities are constant, the probability for a freshly laid415

egg to mature to a larva is416

Π1(P ) = P[XE < KE ]

=

∫

∞

0

∫

∞

τ

wE(τ) (aPP + dE)e
−(aPP+dE)σ dσ dτ

=

∫

∞

0

wE(τ) e
−(aPP+dE)τ dτ,

(A.1)

where we use the independence of XE and KE . Likewise the probability for417

a freshly hatched larva to mature to an adult is given by418

Π2(Q) = P[XL < KL] =

∫

∞

0

wL(τ) e
−(aQQ+dL)τ dτ. (A.2)

Obviously Π1 and Π2 decrease strictly monotonically to 0.419

Appendix A.2. Expectation values for the durations of different stages420

When the parasitoid densities are constant, the expected duration of the egg421

stage (which is either terminated by death of the egg or maturation to a422

larva) is for aPP + dE 6= 0423
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Γ1(P ) = E[min{KE, XE}]

= E[KE |KE ≤ XE]P[KE ≤ XE] + E[XE |XE < KE ]P[XE < KE]

= E[KE |KE ≤ XE]P[KE ≤ XE]

+ (E[KE |XE < KE ]− E[KE −XE |XE < KE ])P[XE < KE]

= E[KE |KE ≤ XE]P[KE ≤ XE]

+ (E[KE |XE < KE ]− E[KE ])P[XE < KE ]

= E[KE ]− E[KE ]P[XE < KE]

=
1

aPP + dE
(1− Π1(P ))

(A.3)
where we used that KE is exponentially distributed.424

For aPP + dE = 0 obviously425

Γ1(0) = E[XE ]. (A.4)

In the same way the expected duration of the larva stage (given that it is426

reached) can be calculated for constant parasitoid densities and aQQ+dL 6= 0,427

Γ2(Q) = E[min{KL, XL}] =
1

aQQ + dL
(1− Π2(Q)) (A.5)

and for aQQ + dL = 0428

Γ2(0) = E[XL]. (A.6)

Note that the expectation values of KE and KL and thus Γ1 and Γ2 decrease429

strictly monotonically with the corresponding parasitoid densities.430

The expected duration of the adult stage of a freshly emerged adult is431

Γ3 = E[KA] =
1

dA
. (A.7)

Appendix B. Computing f for some distributions432

Elementary representations for the function f from equation (21) can be433

found for some distribution families for the maturation delays. To facilitate434

the computations, we rearrange f by using the formulas for Γ1 and Γ2 derived435
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in Appendix A.2 (assuming that aPP + dE and aQΠ
−1
2

(

1
ρ Π1(P )

)

+ dL are436

non-zero),437

f(P ) =
Π1(P )

Γ1(P )
Γ2

(

Π−1
2

(

1

ρ Π1(P )

))

=
Π1(P )
1−Π1(P )
aPP+dE

1− Π2

(

Π−1
2

(

1
ρ Π1(P )

))

aQΠ
−1
2

(

1
ρ Π1(P )

)

+ dL

= (aPP + dE)
Π1(P )

1− Π1(P )

1− 1
ρ Π1(P )

aQΠ
−1
2

(

1
ρ Π1(P )

)

+ dL
.

(B.1)

Now the following formulas for f in the special cases can be easily verified.438

Appendix B.1. Constant durations439

The maturation from egg to larva and from larva to adult takes a constant440

time TE and TL respectively. For this distribution441

Π1(P ) = e−(aPP+dE)TE

Π2(Q) = e−(aQQ+dL)TL
(B.2)

and (for dE > 0 and dL > 0)442

f(P ) =
TL(aPP + dE)

(

ρe−(aP P+dE)TE − 1
)

ρ (log(ρ)− (aPP + dE)TE) (1− e−(aPP+dE)TE)
. (B.3)

The function f(P ) decreases strictly monotonically in its domain P ∈ [0, P ∗]443

with P ∗ = (log(ρ)−dLTL−dETE)/(TEaP ) obtained by solving (13).1 There-444

fore the arguments of Section 4.3 show that a coexistence equilibrium is445

necessarily unique and arises only when none of the parasitoids can invade446

an equilibrium population of the other parasitoid and the host. To prove447

the monotonicity of f(P ) we define γ = (aPP + dE)TE and q = log(ρ). The448

1Note that for dE = 0 or dL = 0, the stated representation of f(P ) is undefined at
the boundary of its domain but our result on monotonicity stays generally valid for the
original function defined in (21). This can be verified by a simple limit argument.
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domain for P implies that 0 < γ < q. Obviously f(P ) is decreasing if the449

following function g(γ) is decreasing,450

g(γ) = eq
TE

TL
f(P ) =

γ(eγ − eq)

(γ − q)(eγ − 1)
. (B.4)

To prove the desired monotonicity of g(γ), we take the derivative by γ and451

show that gγ(γ) < 0 for 0 < γ < q. Differentiation yields452

gγ(γ) =
eγ (q + qγ − γ2) + eq+γ (q − qγ + γ2)− qe2γ − eqq

(γ − q)2 (eγ − 1)2
(B.5)

and the numerator (now interpreted as a function of q for any γ > 0)453

k(q) = eγ
(

q + qγ − γ2
)

+ eq+γ
(

q − qγ + γ2
)

− qe2γ − eqq (B.6)

determines the sign of gγ(γ). The first two derivatives of k(q) by q are454

kq(q) = eq+γ
(

q − qγ + γ2 + 1− γ
)

− eq(1 + q)− e2γ + eγ(γ + 1)

kqq(q) = eq
(

eγ
(

q − qγ + γ2 − 2γ + 2
)

− q − 2
)

.
(B.7)

It can be easily seen that the equation kqq(q) = 0 has only one solution for455

q. Therefore kq(q) = 0 has at most two solutions and k(q) has at most two456

(local) extrema.457

Moreover, we see that k(0) = k(γ) = 0, that k(q) −−−−→
q→−∞

∞ (the dominant458

term being qeγ with coefficient 1 + γ − eγ), and that k(q) −−−→
q→∞

−∞ (the459

dominant term being qeq with coefficient eγ(1−γ)−1). Since kq(γ) = 0, this460

implies k(q) < 0 for q > γ (and actually k(q) ≤ 0 for q ≥ 0). This completes461

the proof that f(P ) decreases strictly monotonically.462

Appendix B.2. Two-value distribution463

The maturation delay from egg to larva and from larva to adult are each464

distributed with two distinct values that occur with certain probabilities.465

The transformation from egg to larva has length TE1
with probability rE and466

length TE2
with probability 1− rE. The transformation from larva to adult467

has length TL1
with probability rL and length TL2

with probability 1 − rL.468

For this distribution469

ΠE(P ) = rEe
(aPP+dE)TE1 + (1− rE)e

(aPP+dE)TE2

ΠL(Q) = rLe
(aQQ+dL)TL1 + (1− rL)e

(aQQ+dL)TL2 .
(B.8)
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Π−1
L and therefore f have no elementary representations. The numerical470

example presented in Fig. 1 shows however that f can be non-monotonic471

and that therefore multiple coexistence equilibria can occur.472

Appendix B.3. Exponential distribution473

The maturation delays from egg to larva and from larva to adult are expo-474

nentially distributed with expectation 1/λE and 1/λL respectively. For this475

distribution476

Π1(P ) =
λE

aPP + dE + λE

Π2(Q) =
λL

aQQ+ dL + λL

(B.9)

and477

f(P ) =
aPP + dE + λE

ρλL

. (B.10)

Obviously f(P ) increases strictly monotonically in this case. Therefore the478

arguments of Section 4.3 state that a coexistence equilibrium is necessarily479

unique and arises only in the case of mutual invasibility.480

Appendix B.4. Shifted exponential distribution481

The maturation delay from egg to larva and from larva to adult have shifted482

exponential distributions. They have a minimum duration of mE and mL483

respectively, followed by an additional time which is distributed exponentially484

with expectation 1/λE and 1/λL respectively. For this distribution485

ΠE(P ) = e−(aPP+dE)mE
λE

aPP + dE + λE

ΠL(Q) = e−(aQQ+dL)mL
λl

aQQ+ dL + λL
.

(B.11)

Π−1
L and therefore f have no elementary representations. Numerical cal-486

culations show that f can become non-monotonous and therefore multiple487

equilibria can arise.488
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Figure B.7: The graph of the function f with gamma distributed maturation delays.
Parameter values are pE = 2, pL = 5, λE = 1, λL = 1, aP = 0.198, aQ = 1, dE = 0,
dL = 0, ρ = 550, dP = 1, dQ = 1, cP = 1 and cQ = 1

Appendix B.5. Gamma distribution489

The maturation delay from egg to larva and from larva to adult have gamma490

distributions with shape parameter pE and pL respectively and inverse scale491

parameter λE and λL respectively. For this distribution492

ΠE(P ) =

(

λE

aPP + dE + λE

)pE

ΠL(Q) =

(

λL

aQQ+ dL + λL

)pL

.

(B.12)

Π−1
L and therefore f have elementary representations,493

f(P ) =

(aPP + dE)((aPP + dE + λE)
pE − ρλpE

E )

(

λ
−pE
E

(aPP+dE+λE)pE

ρ

)1/pL

λLρ((aPP + dE + λE)pE − λpE
E )

(

(

λ
−pE
E

(aPP+dE+λE)pE

ρ

)1/pL

− 1

) .

(B.13)
Numerical calculations show that f can become non-monotonous and there-494

fore multiple equilibria can arise, see Fig. B.7.495

Appendix B.6. Shifted gamma distribution496

The maturation delay from egg to larva and from larva to adult have shifted497

gamma distributions. They have a minimum duration of mE and mL re-498

spectively, followed by an additional time which is gamma distributed with499
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shape parameter pE and pL respectively and inverse scale parameter λE and500

λL respectively. For this distribution501

ΠE(P ) = e−(aPP+dE)mE

(

λE

aPP + dE + λE

)pE

ΠL(Q) = e−(aQQ+dL)mL

(

λL

aQQ+ dL + λL

)pL

.

(B.14)

Π−1
L and therefore f have no elementary representations. As with the non-502

shifted gamma distribution, f can become non-monotonous and therefore503

multiple equilibria can arise.504

Appendix C. Characteristic equation505

Here we derive a characteristic equation by considering a small perturbation506

from an equilibrium (E, L, A, P , Q),507

E(t) = E + e(t), L(t) = L+ l(t), A(t) = A+ a(t)
P (t) = P + p(t), Q(t) = Q+ q(t)

(C.1)

and assume that508

e(t) = hEe
λt, l(t) = hLe

λt, a(t) = hAe
λt

p(t) = hP e
λt, q(t) = hQe

λt.
(C.2)

The aim of the characteristic equation is to investigate stability of an equi-509

librium by the complex roots for λ. An equilibrium is stable when all roots510

have negative real parts while it is unstable when there are roots with positive511

real part, see (Diekmann et al., 1995). In order to derive the characteristic512

equation, we define513

RE := ρdAA

γE := aPP + dE

γL := aQQ+ dL

ME :=

∫

∞

0

REe
−xEγEwE(xE)dxE

ML :=

∫

∞

0

MEe
−xLγLwL(xL)dxL

(C.3)
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and514

rE(t) : = RE(t)− RE

= ρdAA(t)−RE

= ρdA(A + a(t))− RE

= ρdAa(t)

(C.4)

and515

mE(t) : = ME(t)−ME

=

∫

∞

0

RE(t− xE)SE(xE , t)wE(xE)dxE −ME

=

∫

∞

0

(RE + rE(t− xE))e
−xEγEe

−aP
∫ t

t−xE
p(y)dy

wE(xE)dxE −ME

=

∫

∞

0

(RE + rE(t− xE))e
−xEγE

(

1− aP

∫ t

t−xE

p(y)dy

)

wE(xE)dxE −ME

=

∫

∞

0

rE(t− xE)e
−xEγEwE(xE)dxE

−

∫

∞

0

REe
−xEγEaP

∫ t

t−xE

p(y)dywE(xE)dxE

(C.5)
where we use that ex ≈ 1 + x for small x and that rE(t − xE)p(y) ≈ 0. In516

the same way517

mL(t) : = ML(t)−ML

=

∫

∞

0

mE(t− xL)e
−xLγLwL(xL)dxL

−

∫

∞

0

MEe
−xLγLaQ

∫ t

t−xL

q(y)dywL(xL)dxL

=

∫

∞

0

(
∫

∞

0

rE(t− xE − xL)e
−xEγEwE(xE)dxE

−

∫

∞

0

REe
−xEγEaP

∫ t−xL

t−xE−xL

p(y)dywE(xE)dxE

)

· e−xLγLwL(xL)dxL

−

∫

∞

0

MEe
−xLγLaQ

∫ t

t−xL

q(y)dywL(xL)dxL.

(C.6)
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Now we can state the derivatives518

ė(t) = Ė(t) = RE(t)−ME(t)− aPE(t)P (t)− dEE(t)

= RE + rE(t)− (ME +mE(t))− aP (E + e(t))(P + p(t))− dE(E + e(t))

= rE(t)−mE(t)− aP (Ep(t) + e(t)P )− dEe(t)
(C.7)

where we use that RE −ME − aPEP − dEE = 0 and e(t)p(t) ≈ 0. In the519

same way520

l̇(t) = mE(t)−mL(t)− aQ(Lq(t) + l(t)Q)− dLl(t)

ȧ(t) = mL(t)− dAa(t)

ṗ(t) = cPaP (Ep(t− TJP ) + e(t− TJP )P )− dPp(t)

q̇(t) = cQaQ(Lq(t− TJQ) + l(t− TJQ)Q)− dQq(t).

(C.8)

We introduce the notation521

Π1 := Π1(P ) =

∫

∞

0

e−xEγEwE(xE)dxE

Π2 := Π2(Q) =

∫

∞

0

e−xLγLwL(xL)dxL

Π1(λ) := Π1(P +
λ

aP
) =

∫

∞

0

e−xE(γE+λ)wE(xE)dxE

Π2(λ) := Π2(Q+
λ

aQ
) =

∫

∞

0

e−xL(γL+λ)wL(xL)dxL

(C.9)

and obtain the following by plugging (C.2) into (C.7) and (C.8)522

λhE = ρdA

(

hA − hAΠ1(λ) +AaPhP

Π1 −Π1(λ)

λ

)

− aP (EhP + hEP )− dEhE

λhL = ρdA

(

hAΠ1(λ)−AaPhP

Π1 −Π1(λ)

λ
− hAΠ1(λ)Π2(λ) +AaPhP

Π1 −Π1(λ)

λ
Π2(λ)

+AaQhQΠ1
Π2 −Π2(λ)

λ

)

− aQ(LhQ + hLQ)− dLhL

λhA = ρdA

(

hAΠ1(λ)Π2(λ) −AaPhP

Π1 −Π1(λ)

λ
Π2(λ) −AaQhQΠ1

Π2 −Π2(λ)

λ

)

− dAhA

λhP = aP cP e
−λTJP (EhP + hEP )− dPhP

λhQ = aQcQe
−λTJQ(LhQ + hLQ)− dQhQ

(C.10)

28



where we divide on both sides by eλt and use that ME = ρdAAΠ1. From the523

last two equations of (C.10) we can express hp and hq explicitly in terms of524

he and hl as525

hP = hEΦP (λ) where ΦP (λ) =
PaP cPe

−λTJP

λ+ dP − aP cPEe−λTJP

hQ = hLΦQ(λ) where ΦQ(λ) =
QaQcQe

−λTJQ

λ+ dQ − aQcQLe−λTJQ
.

(C.11)

Using the solutions from (C.11) and the first two equations in (C.10) we can526

express hE and hL in the following form,527

hE = hAΦE(λ)

where ΦE(λ) =
ρdA(1−Π1(λ))

λ+ dE + aPP +ΦP (λ)
(

aPE − ρdAAaP
Π1−Π1(λ)

λ

)

hL = hAΦL(λ)

where ΦL(λ) =
ρdA

(

Π1(λ)(1 −Π2(λ)) − ΦE(λ)ΦP (λ)AaP (1 −Π2(λ))
Π1−Π1(λ)

λ

)

λ+ dL + aQQ+ΦQ(λ)
(

aQL− ρdAAaQΠ1
Π2−Π2(λ)

λ

) .

(C.12)
Plugging hP , hQ, hE and hL in the third equation of (C.10) we have the528

characteristic equation in the form G(λ) = 1,529

G(λ) =

ρdA
λ+ dA

(

Π1(λ)Π2(λ)−AaPΠ2(λ)ΦP (λ)ΦE(λ)
Π1 −Π1(λ)

λ
−AaQΠ1ΦQ(λ)ΦL(λ)

Π2 −Π2(λ)

λ

)

.

(C.13)

Appendix C.1. A sufficient condition for instability530

The following observation can be helpful for proving instability of an equilib-531

rium. It is easily verified that G(λ) −−−→
λ→∞

0. Hence if G(0) > 1 then there is532

a positive real root for the characteristic equation and the coexistence equi-533

librium is unstable. Therefore we investigate the structure of G(0). First we534

see that535

lim
λ→0

Π1 −Π1(λ)

λ
= −

dΠ1/dP

aP

lim
λ→0

Π2 −Π2(λ)

λ
= −

dΠ2/dQ

aQ
.

(C.14)
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We will denote Π
′

1 = dΠ1/dP and Π
′

2 = dΠ2/dQ. Then we calculate536

ΦP (λ)ΦE(λ) = ΦP (λ)
ρdA(1− Π1(λ))

λ+ dE + aPP + ΦP (λ)
(

aPE − ρdAAaP
Π1−Π1(λ)

λ

)

=
ρdA(1−Π1(λ))

λ+dE+aPP
ΦP (λ)

+
(

aPE − ρdAAaP
Π1−Π1(λ)

λ

) .

(C.15)
Since 1/ΦP (λ) −−→

λ→0
0,537

lim
λ→0

ΦP (λ)ΦE(λ) =
ρdA(1−Π1)

aPE + ρdAAΠ
′

1

. (C.16)

In the same way538

ΦQ(λ)ΦL(λ) = ΦQ(λ)
ρdA

(

Π1(λ)(1 −Π2(λ))− ΦE(λ)ΦP (λ)AaP (1−Π2(λ))
Π1−Π1(λ)

λ

)

λ+ dL + aQQ+ΦQ(λ)
(

aQL− ρdAAaQΠ1
Π2−Π2(λ)

λ

)

=
ρdA

(

Π1(λ)(1 −Π2(λ)) − ΦE(λ)ΦP (λ)AaP (1−Π2(λ))
Π1−Π1(λ)

λ

)

λ+dL+aQQ

ΦQ(λ) +
(

aQL− ρdAAaQΠ1
Π2−Π2(λ)

λ

) .

(C.17)

Since 1/ΦQ(λ) −−→
λ→0

0,539

lim
λ→0

ΦQ(λ)ΦL(λ) =
ρdA(1−Π2)(aPEΠ1 + ρdAAΠ

′

1)

(aQL+ ρdAAΠ1Π
′

2)(aPE + ρdAAΠ
′

1)
. (C.18)

Now G(0) can be simplified,540

G(0)

= ρ

(

Π1Π2 +AΠ2Π
′

1

ρdA(1−Π1)

aPE + ρdAAΠ
′

1

+AΠ1Π
′

2

ρdA(1−Π2)(aPEΠ1 + ρdAAΠ
′

1)

(aQL+ ρdAAΠ1Π
′

2)(aPE + ρdAAΠ
′

1)

)

= ρ

(

Π2(aPEΠ1 + ρdAAΠ
′

1)

aPE + ρdAAΠ
′

1

+AΠ1Π
′

2

ρdA(1−Π2)(aPEΠ1 + ρdAAΠ
′

1)

(aQL+ ρdAAΠ1Π
′

2)(aPE + ρdAAΠ
′

1)

)

= ρ
(aPEΠ1 + ρdAAΠ

′

1)(aQLΠ2 + ρdAAΠ1Π
′

2)

(aPE + ρdAAΠ
′

1)(aQL+ ρdAAΠ1Π
′

2)
.

(C.19)
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Figure C.8: Time plots of population dynamics after small perturbations from equilibrium
densities. Both maturation delays, from egg to larva and from larva to adult, have constant
lengths TE and TL respectively. The initial densities for t ≤ 0 are constant and correspond
to perturbations from the unique set of coexistence equilibrium densities. In the left
panel, the egg parasitoid density P is decreased by 1% and the larva parasitoid wins the
competition. In the right panel, the larva parasitoid density Q is decreased by 1% and
the egg parasitoid wins the competition. Parameter values are TE = 1, TL = 1, aP = 1,
aQ = 1, dE = 0, dL = 0, dA = 0.2, ρ = 10, dP = 1, dQ = 1, cP = 1, cQ = 3, TJP = 1 and
TJQ = 1

Appendix C.2. Instability of the coexistence equilibrium when maturation de-542

lays are constant543

We have seen in Appendix B.1, that with constant maturation delays at544

most one coexistence equilibrium exists, and that if it exists, none of the545

parasitoids can invade an equilibrium population of the other parasitoid and546

the host. This observation and the simulations shown in Fig. C.8 suggest that547

the coexistence equilibrium is unstable. We will now prove this conjecture548

by using the criteria from Appendix C.1, which states that an equilibrium549

is unstable when the corresponding G(0) > 1. Using the formulations of550

Appendix B.1 and Appendix C.1, it is easily verified that with constant551

maturation delays Π
′

1 = −aPTEΠ1 and Π
′

2 = −aQTLΠ2. Plugging into (C.19)552

yields with the notation Γ1(P ) = Γ1 and Γ2(Q) = Γ2,553

G(0) = ρ
(aPEΠ1 − aPTEρdAAΠ1)(aQLΠ2 − aQTLρdAAΠ1Π2)

(aPE − aPTEρdAAΠ1)(aQL− aQTLρdAAΠ1Π2)

=
Γ1 − TE

Γ1 − TEΠ1

Γ2 − TL

Γ2 − TLΠ2

,
(C.20)
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where we use E = ρdAAΓ1, L = ρdAAΠ1Γ2 and ρΠ1Π2 = 1 according to554

equation (7), (8), (9) and (11). For both fractions in the last line of (C.20),555

the numerator is positive and the denominator is negative. To verify this,556

we deduce from equation (A.3) that557

Γ1 = E[min{KE , TE}] < TE and

Γ1 = Π1TE + (1−Π1)E[KE |KE ≤ TE ] > Π1TE,
(C.21)

where KE is an exponentially distributed random variable. In the same way558

Γ2 < TL and Π2TL < Γ2. To prove G(0) > 1, it is therefore enough to show559

that Γ1−TEΠ1 < TE −Γ1 and Γ2−TLΠ2 < TL−Γ2. To verify the first –and560

in the same way the second– inequality, we use Γ1 = (1 − Π1)/(aPP + dE)561

from equation (A.3), and argue562

Γ1 − TEΠ1 < TE − Γ1 ⇔

1− Π1

aPP + dE
− TEΠ1 < TE −

1−Π1

aPP + dE
⇔

1− Π1 −Π1(aPP + dE)TE < (aPP + dE)TE − 1 + Π1 ⇔

1− e−γ − γe−γ < γ − 1 + e−γ ⇔
∫ γ

0

(xe−x)dx <

∫ γ

0

(1− e−x)dx ⇐

xe−x < 1− e−x ∀x > 0 ⇔

1 + x < ex ∀x > 0,

(C.22)

where γ = (aPP + dE)TE . The last line of (C.22) is obviously true. This563

completes the proof that the coexistence equilibrium is unstable when the564

maturation delays are constant.565
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