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1 Introduction

The evolution of virulence is a very active area of research; it is impossible to

cite here all the publications, or even the very relevant ones. I just suggest the

edited book (Dieckmann et al., 2002) as a suitable reference for much of the

relevant literature up to its publication year, Ewald (1994) and Stearns (1999)

as passionate advocates of the relevance of evolutionary thinking for medicine of

infectious diseases, as well as sources of much empirical information. Reference to

the more recent literature will be given in the sections, when discussing extensions

of the basic model. Beyond the theoretical interest of the subject, it is thought

that this research area may provide advice in the design of therapy and vaccines

(Williams and Nesse, 1991, Bull, 1994, Dieckmann et al., 2002, Gandon and Day,

2007).

Virulence may have different meanings (Bull, 1994); here I (like many of the

cited authors) restrict myself to a precise definition: ‘virulence’ is the parasite-

induced host mortality (which is not the same as case mortality or other measures

of lethality (Day, 2002)). Note that in the plant pathology literature ‘virulence’

has often a rather different meaning (CastagnoneSereno et al., 2007), implying

the ability of a pathogen to cause a susceptible response on a host plant carrying

a given resistance gene; recent publications (Sacristan, 2008), however, adhere to

the meaning of ‘virulence’ used here.
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A parasite (here, the terms ‘parasite’ and ‘pathogen’ will be used interchange-

ablely, without referring to any specific life form) may also decrease a host’s fer-

tility or well-being, but, as long as this does not affect its transmissibility, this

does not do any harm to a parasite. On the other hand, a parasite that kills its

host, kills also itself and prevents further transmission; from this observation, the

view (named ‘the common evolutionary wisdom’ by Anderson and May (1982))

emerged that high virulence is maladaptive: parasites evolve to be relatively

benign, since they have no interest in killing their host; parasites are virulent

to a host only when their interaction has not been long enough for adaptation.

Support for this view came from the devastating effects of some introduction of

parasites into new hosts (Myxoma virus, Dutch elm disease), although Ebert and

Hamilton (1996) argue that these examples are rather the exception than the rule

in the introduction of parasites.

In general, there is now good empirical evidence (Read, 1994) for virulence to

persist in long-term parasite-host associations. Furthermore, in the case of the

Myxoma virus in Australia, it is well documented that selection did not proceed all

the way to leave only avirulent strains, but stabilized instead at an intermediate

level of virulence (Fenner and Ratcliffe, 1965, Fenner, 1983). Actually, later

measurements suggest a reincrease of virulence, perhaps in response to acquired

resistance in rabbits, although several hypotheses are consistent with the data

(Sabelis and Metz, 2002).

Indeed, it is clear (Poulin and Combes, 1999, Day et al., 2007) that virulence

is a property of a host-parasite interaction, and not simply of the parasite. From

this point of view, it would be appropriate to study the evolution of virulence

in a coevolutionary setting, where host resistance is also considered. However,

modelling coevolution is much more complex, and except for a pioneering paper

(Andreasen and Christiansen, 1993), only recently some papers (Gilchrist and

Sasaki, 2002, Dieckmann, 2002, Boots and Bowers, 2003) have started to address

models for host-parasite coevolution. Here, as most authors, I limit the analysis
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to the evolution of virulence, as if it would depend on the pathogen only. A

justification for this is that, usually, parasites have a much shorter generation time

than their hosts. A time-scale argument lets us consider, as a first approximation,

the case where only parasites can evolve.

A breakthrough in the understanding of the evolution of virulence occurred

in the early 80’s with the help of simple mathematical models, thanks to the

seminal papers of Levin and Pimentel (1981), Anderson and May (1982), and

Ewald (1983). Their main argument is based on the existence of a ‘trade-off’

between virulence and infectivity. The best empirical evidence for the existence of

such a trade-off comes from mouse malaria (Mackinnon and Read, 1999, Ferguson

et al., 2003, de Roode et al., 2005); some evidence for a trade-off is given also by

Fraser et al. (2007) for HIV, while several manipulative experiments (Ebert, 1998,

Boots and Mealor, 2007, de Roode et al., 2008) suggest that virulence increases

when selection on between-host transmission is released. A trade-off function is

explicitly built from the experimental data on Myxoma in Dwyer et al. (1990).

Ebert and Bull (2003) question the generality of the trade-off approach, and

suggest that virulence may not be directly linked to transmissibility, but rather

depend on specific features of the pathogen-host interactions, providing several

examples of parasite evolution that appear independent or even inconsistent with

the virulence–transmissibility trade-off. A recent review paper (Alizon et al.,

2009) discusses in detail the issue, giving a more balanced view; my conclusion is

that the trade-off assumption can be used as a sound basis for the analysis, while

recognizing that each specific system needs to be analyzed, before applying ideas

resulting from the general model.

I will base the following analysis on the existence of a virulence–transmissibility

trade-off, following a narrow route through the vast range of issues and models

of virulence. The main questions I will address are the expected path of vir-

ulence evolution, and the possibility for several parasite strains, differing only

quantitatively in virulence, to coexist at an evolutionarily stable state.
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The analysis of this chapter will be mainly set in the framework of adaptive

dynamics (Metz et al., 1996, Geritz et al., 1997) as presented in previous chapters.

I will especially exploit ‘pairwise invasibility plots’ showing the sign of the invasion

coefficients sx(y) where x and y represent the virulences of different parasite

strains.

In Section 2, I will examine the basic model of Anderson and May (1982),

restating their results in this framework. The transmissibility-virulence trade-

off might be mediated through the speed of pathogen replication: some authors

(Gilchrist and Sasaki, 2002, André et al., 2003, Alizon and van Baalen, 2005)

have shown that a trade-off function emerges naturally out of standard models

for the dynamics of within-host interactions between pathogens and host cells;

this idea is illustrated at depth in Section 3 following Gilchrist and Sasaki (2002).

In Section 4, I will investigate models with superinfections, where it is possible

that a strain can infect also hosts that are already infected with another strain.

Finally in Section 5, some other approaches and open problems will be briefly

examined.

2 The basic epidemic model

Density vs. numbers... The starting point in the adaptive dynamics approach is

a model describing the interaction of different parasite types. This model will be

a modification of a standard models for epidemics (Bailey, 1975, Hethcote, 1976)

with a single type of parasites. I will discuss here only SIR models: hosts are

born susceptible (S) to infection, then may become infected (I) and, if so, they

either die or recover and become immune (R) (see Box 1 for more explanations on

epidemic models). The model includes disease-related deaths, since the interest

lies in the lethal effects caused by the pathogen: thus host population density N

will be a dynamic variable instead of a fixed constant.
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Box 1. Epidemic models.
Epidemic models generally divide the host population into indi-
viduals that are currently infected and infectious (I), individuals
that are not infected but are susceptible to the infection (S) and
often individuals that are recovered from the disease and immune
to further infection (R); the dynamics of the parasites is described
simply as the dynamics of infected hosts. Within-host dynamics,
in particular, are not modelled explicitly.
A lucid presentation of basic epidemic models is given, for instance,
by Hethcote (1989); here I just outline the main ideas. If the in-
fection confers permanent immunity, the dynamics of the infec-
tion is S → I → R (susceptible individuals become infected and
then immune). Without immunity the dynamics of the infection is
S → I → S (susceptible individuals become infected and then sus-
ceptible again). A latency period after infection is often modelled
by introducing the class of exposed (E), individuals that have been
infected but are not yet infectious, obtaining a S → E → I → R
dynamics.
New infections are assumed to occur because of encounters between
infectious and susceptible individuals; the standard assumption is
a mass-action law for encounters, so that the rate of new infections
is βSI. There is not a general agreement on what the variables
S, I, . . . should represent, whether numbers or spatial densities;
among others, Jong et al. (1995) discuss the evidence, together the
related issue of whether β should vary when population density N
is variable; they argue that usually it will be β = λ

N
(they call this

‘true mass-action law’) where λ is the average number, assumed
to be constant, of individuals contacted by one individual in unit
time. Here I will consider S, I, . . . as densities over some area in
which homogeneous mixing is plausible, and stick to the assumption
of constant β (‘standard mass-action law’), mostly for consistency
with previous analyses on virulence. Use of the ‘true mass-action
law’ would change some algebraic details, but not the qualitative
results for competition among strains (O’Keefe, 2005).
In the simple models discussed here, one needs also to consider
rates of birth (all individuals are supposed to be born susceptible),
of death, and of recovery.
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The equations (the underlying assumptions are presented in Box 1) are

dS

dt
= b(N)N − dS − βSI

dI

dt
= βSI − dI − αI − γI

dR

dt
= γI − dR

(1)

where N = S +I, β is the contact rate (see Box 1), α parasite-induced death rate

(= ‘virulence’), γ recovery rate , d natural death rate and b(N) the birth rate,

assumed to be density-dependent. In absence of the epidemic, the population

size would converge to its carrying capacity K, which is found by solving the

equation b(K) = d. The assumption of density-regulation through hosts’ fertility

is the same as in Bremermann and Thieme (1989) and differs from the simpler

assumption of a constant per capita birth rate b (Anderson and May, 1982) which

entails exponential growth in absence of the epidemic.

The behaviour of system (1) can be understood in terms of the ‘basic re-

productive ratio’ R0 of the parasite, representing the expected number of new

infections caused by a single infected individual when the whole population is

susceptible (see Box 2 for details). In our case, R0 is given by

R0 =
βK

d + α + γ
. (2)

It is clear that, if each infective host infects, on average, less than one new host

(R0 < 1), the epidemic will fade out, since not enough new cases are produced.

If, on the contrary, an infective host infects on average more than one other host

(R0 > 1), the epidemic will spread, at least as long as the number of susceptibles is

large enough. For system (1), the epidemic will then settle at a globally attractive

endemic equilibrium with a total host population N̄ and a susceptible population

S̄. At the equilibrium each infective will on average infect one susceptible over

its expected life time, so that

βS̄

d + α + γ
= 1. (3)
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Box 2. Computation of the basic reproductive ratio R0.
The basic reproductive ratio R0 is the average number of individ-
uals infected by a single infective under some given and constant
environmental conditions (often an equilibrium population with all
susceptibles).
If the rate at which an infectious individual infects other individuals
(the ‘effective contact rate’) does not depend on the time elapsed
since infection, R0 can be obtained simply from multiplying the
‘effective contact rate’ (β times the absolute number of susceptibles)
with the expected time spent as infective.
In models (such as those consisting of ordinary differential equa-
tions) where future dynamics depends on present state only, and
not on past history, the time spent in any state (for instance as an
infective) will follow an exponential distribution; thus, the expected
time spent as infective is simply the inverse of the exit rate from
that state. If exits for different causes are possible (recovery, ‘nat-
ural’ death, parasite-induced death), their rates have to be added,
yielding the total exit rate.
For instance in model (1), natural mortality rate d, disease-related
death rate α and recovery γ have to be added, giving an expected
time as infected equal to 1/(d+α+γ). When examining whether a
parasite is able to establish itself, I consider a completely susceptible
population at carrying capacity K, thus obtaining (2).
When discussing the success of the invasion of a parasite 2 in a pop-
ulation where parasite 1 is already established, then, in the case of
complete and instantaneous cross-immunity, the environment for
parasite 2 is the population at the endemic equilibrium with para-
site 1, so that the number of susceptibles is S̄1; the expected time
as infective is as before 1/(d + α2 + γ2), so that (6) is obtained.
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The invasion of an established epidemics by a ‘new’ parasite type can be stud-

ied by extending model (1) to allow for two different types of infected individuals

I1 and I2. While other assumptions are possible (see Section 4), I assume here

that an infected individual cannot be further infected. This leads to the following

system of differential equations

dS

dt
= b(N)N − dS − β1SI1 − β2SI2

dI1

dt
= β1SI1 − dI1 − α1I1 − γ1I1

dI2

dt
= β2SI2 − dI2 − α2I2 − γ2I2

dR

dt
= γ1I1 + γ2I2 − dR

(4)

with N = S + I1 + I2 + R.

A complete analysis of (4) is presented by Bremermann and Thieme (1989) for

n competing strains. Here I summarise the relevant results, with some intuitive

explanations. It must be kept in mind that, while the present analysis relies on

local stability analysis, the global picture is the same (Bremermann and Thieme,

1989), so that, in this case, consideration of pairwise invasibility provides all

necessary information for predicting outcomes of competition between parasite

strains.

The invasion fitness sx(y) can be computed linearizing (4) at the endemic

equilibrium for only one strain; letting s1(2) denote the invasion coefficient of

parasite 2 (with parameter values α2, β2 . . .) into a population at equilibrium

with parasite 1, we have

s1(2) = β2S̄1 − (d + α2 + γ2). (5)

It is more transparent, however, to use a suitable reproductive ratio: specifically,

let R1
0(2) be the expected number of new infections caused by a single individual

infected with strain 2 when the host population is at its endemic equilibrium for

strain 1. Strain 2 will invade into a population at equilibrium with strain 1 if

R1
0(2) > 1; it cannot do so if R1

0(2) < 1. This is proved in a general setting, where
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the definition of R0 is more complex, by Diekmann and Heesterbeek (2000); they

also show that the condition on R0 is equivalent to a condition on invasion fitness.

Following the computations outlined in Box 2, the invasion condition can be

written as

R1
0(2) =

β2S̄1

d + α2 + γ2
> 1. (6)

Note from (5) that, in this case, a very simple relation holds between R1
0(2) and

s1(2): s1(2) = (d + α2 + γ2)(R
1
0(2) − 1).

In order to compare different strains, it is convenient to define a ‘standardized

reproductive potential’

ϕi =
βi

d + αi + γi
. (7)

Since the ‘standard mass-action law’ (Box 1) is assumed, the basic reproductive

ratio of strain i when there are S susceptibles in the population is ϕiS. Under

a ‘true mass-action law’ (Box 1), the basic reproductive ratio of strain i with S

susceptibles in a population of size N would be ϕi
S
N

.

Now (6) reads ϕ2S̄1 > 1, while (3) for S̄1 yields ϕ1S̄1 = 1. Hence, the invasion

of strain 2 will be successful if ϕ2 > ϕ1.

2.1 Optimal virulence

I now turn to the main topic of this chapter, the evolution of virulence, identifying,

as discussed in the Introduction, virulence with parasite-induced death rate α.

Several conclusions can be drawn from the fact that s2(1) > 0 if and only if

ϕ2 > ϕ1.

First of all, we see that, if ϕ2 > ϕ1, strain 2 can invade strain 1 but strain 1

cannot invade strain 2; thus mutual invasibility is impossible and coexistence may

occur only as a transient or in the infinitely unlikely case where ϕ1 = ϕ2. Second,

strain 1 cannot be invaded by any other parasite type if ϕ1 is larger than ϕi for

any other feasible strain i; in other words, an evolutionarily uninvadable state

will be found at the state that maximizes
β

d + α + γ
among all feasible states.
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It is clear from (7) that if two types differ only in their virulence, the less viru-

lent type will have a larger R and will thus outcompete the other type. Therefore,

we would expect an evolutionary trend toward a decreased virulence, recovering

the ‘conventional wisdom’.

However, matters are different if one assumes, following Anderson and May

(1982), a trade-off between contact rate β and virulence α, i.e. a relation that

gives the contact rate β as a function of virulence α (see a) and c) of Fig. 1). The

existence of such a trade-off is a basic tenet of the current theory on the evolution

of virulence, as discussed in the Introduction.

Since β is now envisaged as a function of α, while γ is taken as a constant

independent of α (other assumptions are certainly possible, see Alizon (2008))

and d does not depend on parasite strategy, the quantity ϕ of (7) can be written

as a function of virulence α

ϕ(α) =
β(α)

d + α + γ
. (8)

The invasibility condition ϕ2 > ϕ1 shows that an evolutionarily uninvadable state

will be found at a maximum of the function ϕ(α). This result is a consequence

of the fact that, in this model, for a parasite the environment is one-dimensional:

number of susceptibles S; hence, a maximization principle holds (Chapter ??).

The qualitative conclusions depend on the shape of the function β(α): if it

is a concave function (like in Fig. 1a), which seems likely because of the ‘law

of diminishing returns’ (Lipsitch et al., 1995), there exists a single maximum of

ϕ(α). Simple arguments from one-dimensional adaptive dynamics show that, in

this case, the value of α at which ϕ is maximized is a final state for evolutionary

dynamics (a ‘continuously stable strategy’ (Eshel, 1996)). Often, this strategy

will correspond to an intermediate virulence (as shown in Fig. 1a)-b)), but it is

also possible to have the maximum at α = 0 (‘avirulence’).

If the function β(α) is convex, there are no maxima of the ‘basic reproductive

ratio’ R, but often a single minimum; this, in the framework of adaptive dynamics,
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Figure 1: a) An example of a concave function: β(α) = Cα
A+α

+ B and the corre-
sponding ϕ(α);
b) the ‘invasibility plot’ for the functions in a); α2 can invade α1 when (α1, α2) is
in the black region;
c) an example of a concave–convex function: β(α) = 1

A+Be−Cα , and the corre-
sponding ϕ(α); Parameter values are A = 0.5, B = 10, C = 0.8;
d) the ‘invasibility plot’ for the functions in c).
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is an evolutionary repeller, i.e. a separating point for evolutionary trajectories: if

the initial virulence α is lower than a threshold value, evolution will drive virulence

to 0; if it is above, virulence will increase forever in the course of evolution. A

more reasonable assumption is that β(α) is convex only within a certain range of

virulence, and concave beyond that (like in Fig. 1c). In this case, evolution could

tend toward high or low virulence, depending on initial conditions.

Note that I use here the terms ‘concave’ and ‘convex’ following the standard

mathematical use. Often, in the biological literature, ‘convex’ is used for a func-

tion like that in Fig. 1a), which is called ‘concave’ here.

As mentioned in the Introduction, a trade-off function has been fitted to data

on Myxoma virus, to study whether the evolutionary path could be interpreted

as maximizing the function ϕ(α). More often, the principle has been tested by

indirect methods, by showing that a parameter change resulted in a consistent

shift in virulence. In order to see the effect of parameters on the optimal value

of virulence (in the case of a concave trade-off function), one can note that a

maximum of R must satisfy

β(α) = β ′(α)(d + α + γ). (9)

Equation (9) can be expressed in graphical form, as shown, for instance in (van

Baalen, 2002). It easily follows that an increase of the natural mortality d should

result in a virulence increase. This prediction, that intuitively can be explained

by saying that a host’s value for a parasite is lower if its expected lifespan is

anyway low, has been experimentally confirmed (Ebert and Mangin, 1997).

Along a different, an increase or decrease of transmissibility (due, for instance,

to different climatic conditions or hygiene procedures) does not change the opti-

mal level of virulence, as long as the increase [or decrease] is proportional for all

levels of α. On the other hand, if the shape of the trade-off function β(α) changes,

it is clear from (9) that this will affect the selected value of α. Ewald (1994) dis-

cusses, through several empirical examples, how this should change with mode of
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transmission, and other factors of the infection process.

2.2 The role of density-dependence

The case where death rate d, and not only birth rate, is density–dependent is sur-

prisingly more complex than system (1) (Andreasen and Pugliese, 1995). How-

ever, Pugliese (2002) shows that, when the trade-off function β(α) is concave,

the evolutionary dynamics is similar, with convergence to an evolutionarily un-

invadable state, although shrinking dimorphisms may arise in the path to the

stable state. On the other hand, it has recently been shown that, if the trade-off

function is convex even in a small part of the range, more complex evolutionary

dynamics may occur with branching of divergent strains (Svennungsen and Kisdi,

2009)

I restrict here to the concave case, and analyse the properties of the final

evolutionary state. Modifying (5) to this case, one obtains

sα1
(α2) = β2S̄1 − (d(N̄1) + α2 + γ2) (10)

where N̄1 and S̄1 =
d(N̄1) + α1 + γ1

β1
are the equilibrium values of N and S in

presence of strain 1 alone.

It is possible to define in this case too a ‘standardized reproductive potential’

ϕN(α) =
β(α)

d(N) + α + γ
. (11)

that will however depend on the population value N at which it is computed. It

is then no longer possible to define a strain that maximizes ‘a single standardized

reproductive potential, since the latter varies with N .

To determine the direction of virulence evolution, the essential quantity is

D(α) =
∂

∂α2
sα(α2)|α2=α. One finds

D(α) =
S̄(α)

d(N̄(α)) + α + γ

(

β ′(α) −
β(α)

d(N̄(α)) + α + γ

)

. (12)
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An evolutionarily singular state α∗ satisfies D(α∗) = 0, and thus

β ′(α∗) −
β(α∗)

d(N̄(α∗)) + α∗ + γ
= 0. (13)

This means that α∗ must maximize, over α, the ‘standardized reproductive po-

tential’ ϕN̄(α∗)(α) with N fixed at the equilibrium population size for strain α∗. In

other words, finding the evolutionary attractor can be seen as a recursive process:

choose a potential α∗, find its equilibrium population size N̄(α∗); then, find the

maximum of ϕN̄(α∗)(·): if this maximum is α∗, this is an evolutionary stationary

state; otherwise try with a different α∗. Pugliese (2002) shows that there is always

a unique solution to this process, and that this is an evolutionary attractor.

Dieckmann (2002) analyses extensions of model (1) where the demographic

rates b and d, as well as the contact rate β and ‘virulence’ α are allowed to

depend in various ways on the densities of susceptibles S and infectives I. This

gives rise to somewhat richer evolutionary behaviours than have been discussed

so far; moreover, he shows that some kinds of density-dependence give rise to

results that cannot be interpreted in terms of R0. While certainly a case can be

made for all rates being density-dependent, I believe that system (1) provides

a simple, but reasonably realistic, basis for the analysis; the previous example

with density-dependence in the death rate shows some possible consequences of

allowing for other types of density-dependence.

3 Within-host processes

Several authors in recent years have started tying virulence and infection trans-

mission between hosts to the dynamics of the infection process within a host (see

a recent review by Mideo et al. (2008) who favour the name of ‘nested models’

for this approach). This, on the one hand, connects this type of models to more

measurable processes, on the other hand, avoids invoking the ‘trade-off’ as a first

principle but instead obtains it as the result of a ‘mechanistic’ model.
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Box 3. A simple model of immune-pathogen within-host dynamics.
Let the within-host state be described through the pathogen load
P and the host’s level of specific immunity B. The variable B may
represent some precise quantity, like the density of specific B-cells
or antibodies, or a more generic index related to the different types
of immune cells specific for that pathogen agent.
The model studied by Gilchrist and Sasaki (2002) has the structure
of a predator-prey model, with pathogens (the prey) replicating at
rate r, in absence of immune response, and being killed by the
immune system at rate c on encounter, and the immune cells pro-
liferating proportionally (with a proportionality constant a) to the
pathogen load. One then obtains











dP

dϑ
= rP − cBP

dB

dϑ
= aBP

(14)

where ϑ represents time since infection of the individual host.
Some solutions, with different initial conditions, of system (14) are
shown in Fig. 2: P (ϑ) initially increases (if r > cB0) to a maximum
and then declines to 0, while B(ϑ) increases to an asymptotic level
(depending on initial conditions) B∞.
Recovery is not explicitly modelled in this system, but when an
individual reaches a B level close to B∞, it is effectively immune to
further infections.
Many other models for the dynamics of virus-immune interactions
can be found in the books by Nowak and May (2000) and Wodarz
(2007).

P
0 500 1.000 1.500

B

200

400

600

800

1.000

1.200

Figure 2: The phase plane of system (14); parameter values are r = 100, a = 0.5,
c = 1.
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There exists a wide body of literature on the dynamics of within-host infection

process, concerning especially the dynamics of HIV (Perelson et al., 1993, Nowak

and May, 2000). When within-host dynamics is only a part of a model includ-

ing between-hosts transmission, models must necessarily be simplified; basically,

models can be classified according to two features: the presence or not of an

active immune response fighting the pathogen cells; the analysis of the transient

phase of the infection process vs. long-term asymptotic state.

The two factors are clearly linked, since, if an active immune response always

results in pathogen clearance, only short-term features can be relevant. This is the

framework used by Gilchrist and Sasaki (2002) in the first paper that consistently

studies pathogen evolution (actually also host-pathogen coevolution) building on

a model for within-host dynamics (see Box 3).

The quantity assumed to evolve is the replication rate r, roughly equivalent

to virulence. Evolution of c would correspond to the ability of escaping immune

recognition, which is something not dealt with here. Evolution of a is discussed in

detail by Gilchrist and Sasaki (2002) as a trait controlled by the host, although it

certainly depends also on immune recognition, that could depend also on parasite

traits. In any case, evolution of a is beyond the scope of this chapter.

In order to study pathogen evolution within the previous framework, it is

necessary to connect model (14) for the within-host dynamics to infection trans-

mission, and host mortality. A natural assumption is that transmissibility is

proportional to pathogen load; this corresponds to a transmission coefficient de-

pending on age-since-infection β(ϑ) = β0P (ϑ). As for hosts’ death rate, Gilchrist

and Sasaki (2002) assumed that it consists in a basal level (d) plus a component

proportional to pathogen replication (k1rP ) plus a component proportional to

the proliferation of the immune system (k2aBP ), because of the resource drain;

on the whole, the death rate α(ϑ) depends on age-since-infection as

α(ϑ) = d + k1rP (ϑ) + k2aB(ϑ)P (ϑ). (15)
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One can extend the computation of R0 to the case where parameters depend

on age-since infection (see Diekmann and Heesterbeek, 2000), obtaining

R0 = K

∫ ∞

0

β(ϑ) exp{−

∫ ϑ

0

α(u) du} dϑ (16)

since the probability of being alive and infectious ϑ time after the infection is

π(ϑ) = exp{−

∫ ϑ

0

α(u) du}. (17)

Using the above expressions for β and α, and performing some manipulations,

one can write

R0 = β0K

∫ ∞

0

P (ϑ)e−dϑ exp{−

∫ ϑ

0

[k1rP (u) + k2aB(u)P (u) du} dϑ

= β0K

∫ ∞

0

P (ϑ)e−dϑ

(

B(ϑ)

B0

)−k1r/a

e−k2(B(ϑ)−B0) dϑ

=
β0K

a
B

k1r/a
0

∫ B∞

B0

e−dB−1(u)u−k1
r

a
−1e−k2(u−B0) du.

(18)

The last equality depends on the fact that, changing ϑ into −t, system (14)

becomes the classical SIR epidemic model for a closed population, studied by

Kermack and McKendrick (1927) and exposed in (Hethcote, 1989). Then one

can exploit the prime integral existing for that system; see Gilchrist and Sasaki

(2002) for details.

One can also repeat, almost exactly, the computations of Section 2, if host

demography satisfies the same assumptions. It turns then out that a pathogen

strain characterized by a different value of r can invade if and only if its R0 is

greater than the one of the resident strain. Hence, the principle of maximizing

R0 still holds.

By computing R0 numerically (see Fig. 3), it has always been found that R0

has a unique maximum, at an intermediate value of r, except for parameter values

that make no biological sense. A rigorous proof of this property of the function

R0 in (18) is however lacking.

In this example, the function R0 has been computed directly, without defin-

ing “virulence”, since infection-induced death rate (and transmission) varies, as
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Figure 3: The values of the reproductive ratio R0, from (18), and the average
virulence, transmissibility and recovery rate, as defined in (22), for different values
of r. The scale for R0 is on the left, that for the rates on the right (in logarithmic
scale). Parameter values are a = 1, c = 1, P0 = 10−3, B0 = 1, d = 10−4,
k1 = 10−4, k2 = 10−6, β̄K = 13.33

shown in (15), with time-since-infection ϑ; clearly the instantaneous death rate

α(ϑ) increases linearly with r, but the indirect effects through pathogen load P (ϑ)

at different ϑ are not easy to grasp. To place this result in the general context

of the previous sections, I find it useful to define ‘average’ virulence, recovery

and transmission rates corresponding to this case; a similar procedure has been

adopted by André and Gandon (2006). To this purpose, I compute three quanti-

ties that summarize the features of the infection in this detailed model, and equal

them to the corresponding quantities in a simple S → I → R model.

Precisely, one can define

R =

∫ ∞

0

P (ϑ)π(ϑ) dϑ Ti =

∫∞

0
ϑP (ϑ)π(ϑ) dϑ

R
Li =

∫ ∞

0

π(ϑ) dϑ. (19)

the quantity R is proportional (through quantities independent of r) to the repro-

duction ratio R0: indeed R0 = β0KR. Ti is then the average time after which an
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infected individual infects another one; it can be considered as a generation time

of the infection. Finally, Li is the expected life span of an infected individual.

These quantities have been computed numerically for different values of r;

practically, to avoid integration over an infinite interval, I found a time τi such

that P (t)π(t) < ε for all t > τi where ε has been chosen small enough that

the probability of infecting an individual after time τi becomes negligible. Then,

using (15) and (17), I approximated

R ≈

∫ τi

0

P (ϑ)π(ϑ) dϑ Ti ≈

∫ τi

0
ϑP (ϑ)π(ϑ) dϑ

R
Li ≈

∫ τi

0

π(ϑ) dϑ +
π(τi)

d
(20)

where the last term represents the expected life time after τi when infection

related deaths no longer occur.

In an S → I → R model, the same quantities can be explicitly computed as

R =
β

d + α + γ
Ti =

1

d + α + γ
Li =

1

d + α + γ
+

γ

d + α + γ
·
1

d
. (21)

Equating the quantities in (19) and (21), one obtains

ᾱ =
1 − dLi

Ti
γ̄ = d

(

Li

Ti
− 1

)

β̄ =
R

Ti
. (22)

In Fig. 3 the average virulence, transmission and recovery rates are shown as

function of the pathogen replication rate r, showing that indeed virulence and

transmission increases with r, while γ has a more complicated dependence (it was

taken as a constant in the classical trade-off model).

If one plots the obtained β̄ as a function of ᾱ, one obtains (see Fig. 4, noting

the double-logarithmic scale) a concave trade-off curve very similar to those used

in Fig. 1a), while γ̄ first increases then declines with increasing ᾱ.

3.1 Effect of immune system on the optimal virulence

An interesting problem that can be addressed through (14)–(17) is how features

of the hosts affect the evolution of virulence. To make the question specific, I

studied how the previous results depend on the value of the parameter a, the

19



 1e-06

 0.0001

 0.01

 1

 100

 1
e-

06

 0
.0

00
1

 0
.0

1  1

 1
00

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
be

ta

ga
m

m
a

alpha

beta
gamma

Figure 4: Average transmissibility and recovery rate vs. virulence, as defined in
(22). Parameter values as in Fig. 3

replication speed of the immune system in response to the pathogen. a can be

considered as an overall measure of the strength of the immune system: a host

with a higher a will be more effective against pathogens, at the cost of a higher

self-induced death rate, because of the form (15) used for the death rate.

In Fig. 5 I show how the optimal pathogen replication rate r depends on a:

it can be seen, as expected, that the higher is a, the higher will be the selected

value of r, ropt(a), in a typical arms’ race pattern. The dependence appears to

follow almost exactly a power law (note the doubly logarithmic scale in Fig. 5).

Some insight towards this fact might be obtained by studying the dependence of

(18) on a and r, especially in the approximation of d = 0.

In the same figure, I plot also the probability of surviving the infection π(τi) as

a function of a with r = ropt(a); it can be seen that survival initially increases with

a but eventually declines. The exact shape of this curve depends on parameter

values, but in all examined cases survival eventually decreases with increasing a,
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Figure 5: Optimal pathogen replication rate and probability of surviving the
infection as a function of a, vs. virulence, a measure of immune system strength
(see text for details). Parameter values, except a, as in Fig. 3

as long as k2 > 0, i.e. there is cost for developing the immune response.

3.2 A simpler approach

A simpler approach to derive macroscopic trade-off from a within-host model has

been adopted by Alizon and van Baalen (2005) (see also Alizon and van Baalen,

2008, Boldin and Diekmann, 2008). They modify the second equation of (14) to

B′ = h + aP − δB. Hence, solutions converge to a stable positive state (P̄ , B̄) =

((δr/c−h)/a, r/c). Neglecting deaths and infection transmission in the transient

before convergence to the equilibrium, they take β = β0P̄ , α = k1rP̄ + k2B̄,

obtaining

β = β0
dr − hc

ac
α = k1r

dr − hc

ac
+ k2

r

c
.

From the fact that β is a linear function of r, while α is a quadratic, it is easy

to see that R0(r) = β(r)
d+α(r)

is a function with a unique intermediate maximum;

writing instead β as a function of α, one can see that it is a concave function,

exhibiting then a ‘trade-off’ as in Fig. 1a).

This derivation is however based on considering only the asymptotic state of
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within-host dynamics, totally neglecting the phase of acute infection. Although

this simplification may be justified for some pathogens, it appears unwarranted

to me for many infections and parameter values. A reasoning like that leading

to (18), although quite laborious and requiring numerical computations, seems

necessary for giving a sound basis to the idea of a macroscopic ‘trade-off’ emerging

from a mechanistic model of within-host dynamics.

4 Superinfection

It has been shown (Levin and Pimentel, 1981, Hochberg and Holt, 1990) that one

mechanism leading to parasite coexistence is that of superinfection (see Box 4).

Specifically, if the strain with lower R0 is capable of superinfecting the other one

more often than vice versa, then coexistence may occur. The models are actually

similar to models used for describing coexistence of plant species in patches of

suitable habitat (Tilman, 1994).

The evolutionary dynamics of virulence in this context has been presented,

mainly through numerical computations, by Adler and Mosquera (1998), who

consider coinfection, and superinfection as a limiting case of coinfection. I restrict

myself here to the case of superinfection, following the analysis by Pugliese (2002)

and especially Boldin and Diekmann (2008).

Coinfection models (see Box 4) are much more complex. In fact, the state

space of these models can be very large, since one should allow for hosts being

infected with any combination of strains. To cope with these problem while

maintaining the possibility of coinfection, some authors (van Baalen and Sabelis,

1995, Mosquera and Adler, 1998) do not allow further infections of doubly-infected

hosts.

As in the previous section, I will consider several parasite strains differing

in the value of virulence α, i.e. the disease-induced death rate. The density

of infected individuals carrying strain α at time t is denoted by I(t, α). The
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Box 4. Superinfection and coinfection.
The models of competition between different pathogen strains dis-
cussed in the previous sections assume that infection with one strain
provides hosts with complete protection against infections by other
strains.
Levin and Pimentel (1981) introduced the possibility of superinfec-
tions: a host infected with strain 1 may become infected by strain
2 upon contact with a host already infected with strain 2. It is
further assumed that, in this case, the host will lose the previous
infection with strain 1; thus, no host will be infected with more
than one strain at the same time.
Following the same considerations as in Box 1, the rate at which
such superinfections of strain 1 by strain 2 occur will be propor-
tional to the product I1I2 if Ii is the density of hosts infected with
strain i. It is convenient to express the proportionality constant as
the product of the contact rate β2 with a scaling factor ρ21. Thus
the rate at which such superinfections of strain 1 by strain 2 occur
is assumed to be β2ρ21I1I2. Conversely, superinfections of strain 2
by strain 1 occur at rate β1ρ12I1I2.
Generally, it is assumed that the constants ρij are smaller or equal
to 1: already infected individuals are not easier to infect than sus-
ceptible ones. This constant ρij is called the superinfection factor.
This model of superinfection consists of several mechanisms at the
level of the individual host: necessarily, a host already infected with
strain 1 that is attacked by strain 2 will go through a period where
both strains are present in its body. Superinfection models assume
that this period is so short to be negligible and eventually only one
strain will persist.
Coinfection models assume (more realistically) that hosts may be
infected with more than one strain at the same time. A host already
infected with strain 1 that is attacked by strain 2 will become a host
infected with strains 1 and 2; afterwards, it may persist in this state
or (because of competition between strains) revert to being infected
with only one strain.
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assumption that the contact rate β depends on the virulence level according to a

given function β(α) stays in place. Since also superinfections are now allowed, one

needs a function relating virulence to superinfection rates. In the notation of Box

4, one needs to know how the superinfection factor ρij depends on the virulence

of the infecting strain αi and of the strain αj that is being infected. It will be

assumed here that there exists a function ρ(α2, α1) that gives the superinfection

factor of a strain with virulence α1 from a strain with virulence α2. Mosquera

and Adler (1998) and Boldin and Diekmann (2008) obtain an expression for this

function on the basis of a within-host model of strain competition (see Subsection

4.1), but I start here with a general analysis under the assumption that the

superinfection factor depends only on the difference in virulence, i.e. ρ(α2, α1) =

k(α2−α1); this assumption has no particular biological motivation, but simplifies

the computations and does not change qualitatively the results.

As before, it is assumed that β(α) is increasing with α (higher virulence allows

for higher transmissibility). To clarify the role of super-infection, death rate d is

assumed to be density-independent; moreover, the ‘per capita’ reproductive ratio

ϕ(α), defined in (8), has a single maximum α̂ (see Fig. 1a,b), so that, without

super-infection, evolution would drive α to α̂. Furthermore, it seems reasonable

to assume that there exists a bounded interval [αm, αM ] with 0 ≤ αm < αM such

that Kϕ(α) ≥ 1 if and only if α ∈ [αm, αM ]; these would be the virulence levels

that allow the pathogen to persist in the host population.

In conclusion, superinfections of a strain with virulence α1 from a strain with

virulence α2 occur at rate

β(α2)ρ(α2, α1)I(t, α1)I(t, α2) − β(α2)k(α2 − α1)I(t, α1)I(t, α2).

Differently from the previous Sections, I will not consider here recovery from

infection, since superinfection is relevant only for long–lasting infections. Hence,

the only exit from the infected state will be through death at rate d (the natural

death rate) plus α (the parasite-induced death rate).
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One can then write the equations when strains α1, . . . , αn are present, using

the abbreviation Ij(t) = I(t, αj), as

d

dt
Ij(t) = Ij(t)

(

β(αj)S(t) +
∑

k 6=j

δ(αj , αk)Ik(t) − d − αj

)

j = 1 . . . n (23)

where

δ(α2, α1) = β(α2)ρ(α2, α1)−β(α1)ρ(α1, α2) = β(α2)k(α2−α1)−β(α1)k(α1−α2).

(24)

The model must be completed by an equation for the susceptibles:

dS

dt
= b(N)N − dS −

n
∑

j=1

βjSIj. (25)

The dynamics of the resulting model (23)–(25) has been studied by several

authors (Levin and Pimentel, 1981, Hochberg and Holt, 1990). Under certain con-

ditions, it allows for the coexistence of several strains at equilibrium; in words,

this occur when the strain(s) that has a lower value of R0 is better able at super-

infecting the one(s) with a higher R0 than vice versa.

The question of the evolutionary dynamics is instead much more complex,

and depends strongly on the function k describing super-infection. Generally,

this will be an increasing function with values ranging between 0 and 1. Three

assumptions concerning its behaviour in 0 lead to rather different conclusions:

(i) k is differentiable with k(0) ≥ 0 and k′(0) ≥ 0 (the differentiable case);

(ii) k(x) = 0 if x ≤ 0; k is differentiable from the right in 0 and k′
+(0) > 0 (the

non-differentiable case);

(iii) k(x) = 0 if x ≤ 0; limx→0+ k(x) > 0 (the discontinuous case).

Nowak and May (1994) used a discontinuous function: k(x) = s > 0 if x > 0;

k(x) = 0 if x ≤ 0. A consequence of the jump of k at 0 is that any resident

strain can be invaded by any other strain with infinitesimally larger virulence. In
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the framework of adaptive dynamics, this would result in a continuous virulence

increase, up to the level αM where the pathogen would not be able to persist.

Assuming instead continuous mutations with arbitrary distribution, it is possible

to obtain a continuum of persisting strains (Nowak and May, 1994), with no limit

to similarity (see also Kinzig et al., 1999). These consequences may be regarded

as being rather pathological.

A model of within-host competition (Mosquera and Adler, 1998, Boldin and

Diekmann, 2008) discussed in Subsection 4.1 supports the non-differentiable case,

and implies anyway k(0) = 0 (i.e., less virulent strains are unable to super-infect

individuals infected with more virulent strains). Here I consider briefly both cases

(i) and (ii), not necessarily with k(0) = 0, using the adaptive dynamics approach.

sα1
(α2) denotes the rate of increase, when rare, of strain α2 in a population

at equilibrium with strain α1. By looking at (23) with only two strains, α1 and

α2, one sees that

sα1
(α2) = β(α2)S̄1 + δ(α2, α1)Ī1 − d − α2 (26)

where S̄1 and Ī1 represent the equilibrium levels of susceptibles and infectives

when only strain α1 is present in the population.

S̄1 can be easily computed as

S̄1 =
d + α1

β(α1)
=

1

ϕ(α1)
(27)

while Ī1 can be found only as the solution of an equation that involves the function

b(·).

As already discussed, in the adaptive dynamics approach, one needs to com-

pute D(α) =
∂

∂α2
sα(α2)|α2=α. One finds

D(α) =
β ′(α)

ϕ(α)
+ d1(α)Ī(α) − 1 (28)

where d1(α) =
∂

∂α2
δ(α2, α)|α2=α.
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The derivative D(α) exists even if k is not differentiable in 0. Indeed

d1(α) =

{

β ′(α)k(0) + 2β(α)k′(0) if k is differentiable

β(α)k′
+(0) if k is non-differentiable.

(29)

Note that in the case in which k is differentiable and satisfies k(0) = 0,

necessarily d1(α) ≡ 0.

An evolutionarily singular state α∗ satisfies D(α∗) = 0, and thus, with some

algebraic manipulations,

d1(α
∗)Ī(α∗)ϕ(α∗) + ϕ′(α∗)(d + α∗) = 0. (30)

If k is differentiable and satisfies k(0) = 0, from the above considerations one sees

that necessarily a∗ = α̂, the maximum of ϕ(α).

Otherwise from (30) one sees that necessarily ϕ′(α∗) < 0 so that α∗ has to

stay to the right of the maximum of the function ϕ(α) (see Fig. 1). In agreement

with intuitive expectations, the evolutionarily singular type in the presence of

superinfections will thus be more virulent than the optimal type in the absence

of superinfections.

A question one may ask is whether an evolutionary singular state always

exists and is unique. This is discussed at length in (Pugliese, 2002) where some

sufficient conditions are obtained, but also a counterexample, although in a case

with extreme parameter values. Here, I do not discuss the issue, and assume that

there always exists a unique evolutionary singular state, as generally obtained

numerically.

For the classification of singular points, one needs to compute the second

derivatives of sα1
(α2) in the point α1 = α2 = α∗. In the differentiable case,

it was shown by Pugliese (2002) that, under the assumption that the trade-off

function β(α) is concave, the evolutionary singular state, when unique, is always

evolutionary stable. With infinitesimally small mutations, evolution would then

move α towards the unique attractor α∗, although transient dimorphisms could

arise in the process. Note, however, that in general α∗ will be stable against
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invasions by nearby mutants, but could be invaded by mutants of significantly

lower virulence, possibly leading to evolutionary fluctuating polymorphisms in

virulence, if larger mutations occur.

If the trade-off function is not always concave, but is convex in some interval

(as in Fig. 1c), the evolutionary dynamics can however be much more complex

(Svennungsen and Kisdi, 2009).

In case the function k is non-differentiable at 0, the second derivatives of

sα1
(α2) at α1 = α2 = α∗ do not exist. Through some computations (see also

Boldin and Diekmann, 2008), one can see that strategy α∗ can be invaded by

close strategies α with α > α∗ if

D2+ =
β ′′(α∗)

ϕ(α∗)
+
(

2β ′(α∗)k′
+(0) + β(α∗)k′′

+(0)
)

Ī(α∗) > 0 (31)

and by close strategies α with α < α∗ if

D2− =
β ′′(α∗)

ϕ(α∗)
− β(α∗)k′′

+(0)Ī(α∗) > 0. (32)

Here

k′′
+(0) = lim

x→0+
k′′(x) = lim

x→0+

k′(x) − k′
+(0)

x

assumed to exist. Clearly, it is then possible that α∗ is invasible from above, and

not from below, or vice versa, giving rise to scenarios somewhat different from

those generally considered in adaptive dynamics.

In order to look at a simple case that allows for some analytic computations,

I assume in what follows that β is constant, independently of virulence α. In ab-

sence of superinfections, then, the optimal strategy would be α̂ = 0. In this case,

the quantity D2+ and D2− will have opposite signs (depending on the concavity

of the function k), so that α∗ will necessarily be invasible from one side.

The graph of sα∗(α2) (as a function of α2) will look locally as the joining of

the two parabolas with opposite signs, like the curves “alpha hat” in Fig. 6.

If α1 is close to α∗, by continuity the graph of sα1
(α2) will be similar, except

that D(α1) > 0 for α1 < α∗ while D(α1) < 0 for α1 > α∗. This implies that the
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K with b0 = 1, d = 0.5, K = 1.

graph of sα1
(α2) will have a non-zero linear component at α2 = α1, so that it

will look like the curves “lower alpha” in Fig. 6 for α1 < α∗, and like the curves

“higher alpha” in Fig. 6 for α1 > α∗.

Looking at the graphs of Fig. 6, the pairwise invasibility plot must necessarily

look like in Fig. 7, so that there must be a region of mutual invasibility for

α1 < α∗ < α2.
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Functions k with opposite concavity in 0 (left or right panel of Figs. 6 and 7)

yield essentially the same invasibility diagrams, if one exchanges α larger than α∗

with those smaller than α∗.
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Figure 8: Invasion fitnesses s(α1,α2)(α). In the left panel, α1 = 0.496198, α2 =
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dimorph.”). In the right panel, α1 = 0.283239, α2 = 0.293242 (curve “symm.
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as in Fig. 6.

We can then study the invasion fitnesses s(α1,α2)(α) when the resident popu-

lation is at a dimorphic equilibrium (α1, α2) with α1 < α∗ < α2. Some examples

are shown in Fig. 8: there are always three zeroes near α∗, as can be deduced

from the fact that s(α1,α2)(α) has to be close to sα∗(α), and so has to change

sign moving from α much lower than α∗ to α much larger than α∗; moreover,

by definition, s(α1,α2)(α1) = s(α1,α2)(α2) = 0, so that it has at least two zeroes;

generically, hence, there will be three zeroes close to α∗ (where sα∗(α) is close to

0).

From Fig. 8, it can also be seen that the pattern of the sign of s(α1,α2)(α) ap-

pears to differ according to how α1 and α2 are located. When they are symmetric

with respect to α∗, s(α1,α2)(α) > 0 for α1 < α < α2: this appears to imply that the

dimorphism shrinks towards α∗; however, the dimorphism can be invaded also by

strategies to one side (of lower virulence in panel a), of higher virulence in panel

b), as long as they are a little farther away. An invasion of this type may lead to
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an asymmetric dimorphism (i.e. one in which a strain is much closer to α∗ than

the other), which then could be invaded only from strains more extreme than the

coexisting ones, and not by intermediate ones. Asymmetric dimorphisms appear

then to be branching dimorphisms.

It is not clear to me whether precise assumptions about the stochastic mu-

tation process are needed to reach a conclusion about the expected outcome,

or whether the use of more advanced tools in adaptive dynamics can provide a

clearcut prediction (the recent paper by Boldin et al. (2009) shows how criti-

cal function analysis may help in obtaining necessary conditions for evolutionary

branching in a superinfection model with differentiable trade-off). It appears

plausible that evolution would go through a number of converging dimorphisms

before a sufficiently asymmetric dimorphism arises, and this gives rise to a branch-

ing of the population. It can also be noted that, in both examples, one of the two

regions where s(α1,α2)(α) > 0 (for α > α2 in panel a), for α < α1 in panel b) is

extremely small (almost invisible in panel a)). One can extrapolate that one of

the branches in the dimorphism will not have much room for evolving (the upper

one in panel a), the lower one in panel b), while the other branch will, through

subsequent invasions, change significantly in virulence. Indeed, such a behaviour

has been found through simulations by Boldin and Diekmann (2008) in a similar

example.

In conclusion, the properties of evolutionary dynamics with super-infection

depend essentially on the properties of the function k near 0, and also on the

assumptions about mutations, i.e. whether only infinitesimally small mutations

are allowed (according to the paradigm of adaptive dynamics, used in this chap-

ter) or whether larger mutations occur (this would often allow invasion by strains

much less virulent than the resident ones).

Using the adaptive dynamics methods, it has been seen here that, in the dis-

continuous case, virulence would increase to infinity, unless physiological limits

or pathogen extinction stop the increase; on the other hand, in the differentiable
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case, one always obtains a convergent stable strategy, which, if k(0) = 0 is the

same as that of the model without superinfection, otherwise it will correspond to

higher virulence (Pugliese, 2002); finally, in the non-differentiable case, it is pos-

sible that branching points arise with a consequent divergence of several strains

(Boldin and Diekmann, 2008).

4.1 Building superinfection function from within-host com-
petition

Since it seems difficult to design experiments that allow to discriminate empiri-

cally such fine properties of the super-infection function, it is worth relating the

function k to more mechanistic models of strain competition. One such exam-

ple has been provided by Boldin and Diekmann (2008), building on the work by

Mosquera and Adler (1998).

They have based their work on a model of the interaction between T cells and

HIV virus particles, studied for instance by Perelson et al. (1993). Considering

only one viral strain, the variables of the model are T , the density of healthy

T -cells, Y , the density of infected T -cells, and P , the density of free virus. The

equations can be written as






T ′ = h − δT − kPT
Y ′ = kPT − (δ + µ(r))Y
P ′ = −kPT + rY − mP

(33)

In system (33) h represents the rate at which healthy T -cells are generated, and δ

the rate at which they die. Hence, in absence of virus T̂ = h/δ is the equilibrium

density of healthy T -cells. m is the rate at which free viral particles die, and

k is the rate at which they attack healthy T -cells (it is implicitly assumed that

infected T -cells are protected from further infection).

Finally, r and µ(r) may have different interpretations, according to the life

cycle of the virus: assuming a continuous release of virus from an infected cell,

viral cells are released one at a time at rate r from infected T -cells, which suffer

an increased (relative to healthy cells) death rate equal to µ(r). Instead, in case
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of a lytic cycle, N viral cells are released from each infected cell at its death,

occurring at rate η, giving r = Nη; assuming that infected cells may also die,

before the copies of the viral genetic material have been completed, at rate δ + ζ ,

one has µ(r) = η + ζ . The notation µ(r) implies that death rate of infected cells

will be higher the higher is the rate, r, at which new viral particles are released

(whatever be the mechanism).

Let

Rw
0 = B(r)

kT̂

kT̂ + m
with B(r) =

r

µ(r) + δ
. (34)

Beyond the infection–free equilibrium (T̂ , 0, 0), system (33) has, if Rw
0 > 1, a

positive equilibrium (T ∗, Y ∗, P ∗) with

T ∗ =
m

k(B(r) − 1)
Y ∗ =

δ(m + kT̂ )

k(µ(r) + δ)(B(r) − 1)
(Rw

0 − 1)

P ∗ =
δ(m + kT̂ )

km
(Rw

0 − 1). (35)

B(r) represents the mean number of free viral particles produced by one virus

that has infected a cell, while Rw
0 (which represents the within host reproduction

number) is equal B(r) times the probability (for a free virion) to infect a cell

before dying. It is possible to prove (Perelson et al., 1993) that the positive

equilibrium is globally attractive if Rw
0 > 1. All the strains considered in what

follows will be assumed to satisfy Rw
0 > 1, which implies B(r) > 1.

To complete the model, one needs to relate the ‘macroscopic’ parameters

(between-host transmission β and disease-induced death rate α) to within-host

process. Boldin and Diekmann (2008) have chosen the relation, similarly to

the method discussed in Subsection 3.2, on the basis of the asymptotic values

as β = β(T ∗, Y ∗, P ∗), α = α(T ∗, Y ∗, P ∗); in numerical computations they use

β = P ∗ + Y ∗, α = kP ∗/h as an example, but other choices may be justified.

Ignoring superinfections, one could then find the value of r (if that is assumed

to be the parameter subject to evolution) that maximizes R0. However, the aim

of this section is to relate the superinfection factor ρ (see Box 4) to the values of
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α (or r) through an extension of model (33).

Consider in fact the introduction of a few virions of a different viral type 2 into

a host that is at equilibrium with viral strain 1; the dynamics can be described

similarly to (33), considering now two strains of free virus and infected T-cells

and using a stochastic description, because of the small number of particles of

type 2 in the initial period after introduction. In this first phase, variations in

healthy and 1-infected T-cells, as well as in viral cells of type 1, can be ignored,

and one can describe the dynamics of type 2 cells as a Markov branching process

with rates described in the derivation of (33).

The aim of the following analysis is to compute the probability of extinction of

the descendants of an initial inoculum before the numbers become large enough

to allow the use of a deterministic model. Hence, we can (see e.g. Haccou et al.,

2007) use the embedded Galton-Watson process, ignoring the time variable. At

this point, virus with a lytic cycle, and those with a continuous release of virus

have to be distinguished.

Consider a free viral particle of type 2 in the continuous-release case: with

probability m/(m + kT ∗
1 ), it will die before infecting a T -cell; here T ∗

1 represents

the number of healthy T -cells at equilibrium with strain 1; hence, using (35),
m

m + kT ∗
1

=
B(r1) − 1

B(r1)
. If it infects a T -cell (probability equal to 1−

B(r1) − 1

B(r1)
=

1

B(r1)
), this, with probability

δ + µ(r2)

δ + µ(r2) + r2
=

1

B(r2) + 1
,

will die before producing any virus; with the complementary probability
B(r2)

B(r2) + 1
it will produce at least one free virus. At the moment of releasing a free virus,

the probability remains the same, since the process is Markovian, so that the

number of descendants follows a geometric distribution. Precisely, the number of

descendants will be
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n with probability πn =
1

B(r1)

(

B(r2)

B(r2) + 1

)n
1

B(r2) + 1
, n ≥ 1

0 with probability π0 =
B(r1) − 1

B(r1)
+

1

B(r1)

1

B(r2) + 1
.

The probability of extinction of the descendants of a single free viral particle is

(Haccou et al., 2007) the smallest solution in (0, 1] of the equation G(z) = z

where G(z) =
∑∞

j=0 πjz
j is the probability generating function.

One can compute

G(z) =
B(r1) − 1

B(r1)
+

1

B(r1)

1

1 + B(r2)(1 − z)
.

Hence, with some algebra, one obtains that the probability of extinction is

pe =

{

1 − B(r2)−B(r1)
B(r1)B(r2)

if B(r2) > B(r1)

1 if B(r2) ≤ B(r1).
(36)

If the initial inoculum consists of n cells, by independence of the branching pro-

cess, it is clear that the probability of extinction will be pn
e .

If a strain 2 such that B(r2) > B(r1) avoids early extinction and reaches a

sizeable number, the deterministic model extending (33) shows that strain 1 will

decrease to extinction. It is then possible to conclude that the super-infection

factor ρ21 will be equal to 1 minus the extinction probability, i.e.

ρ(r2, r1) =

{

1 −
(

1 − B(r2)−B(r1)
B(r1)B(r2)

)n

if B(r2) > B(r1)

0 if B(r2) ≤ B(r1)
(37)

where n represents the typical number of cells in an inoculum into a new host.

More accurately, one should take a probability distribution for n and take the

expectation of (37) relatively to that distribution, but this seems unnecessary for

a qualitative picture.

To put (37) as a function of α1 and α2, one needs only to invert the relation

connecting r to α. In any case, it is clear that (37) belong to the non-differentiable

case discussed in the previous Section, although not of the form k(α2 − α1).

Consider now a virus with a lytic cycle producing Ni (depending on viral

strain) cells at the death of an infected T cell. Now ri = ηiNi where ηi is the rate
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at which infected T cells rupture releasing viral cells. Again, a free viral cell of

type 2 will die before infecting a T -cell with probability B(r1)−1
B(r1)

. If it infects a

T -cell, this, with probability

η2/(δ + ζ2 + η2) =
B(r2)

N2

will complete the cycle and release N2 viral cells; with the complementary prob-

ability 1 − B(r2)
N2

, the infected cell will die before the viral copies are ready, and

the viral cell will leave no descendants. In this case, hence

πN2
=

1

B(r1)

B(r2)

N2
, π0 =

B(r1) − 1

B(r1)
+

1

B(r1)

(

1 −
B(r2)

N2

)

, πn = 0 otherwise.

Then the generating function is

G(z) =
B(r1) − 1

B(r1)
+

1

B(r1)

(

1 −
B(r2)

N2
(1 − zN2)

)

. (38)

The mean of the distribution G′(1) = B(r2)/B(r1) is, as expected, the same

as in the continuous release case. However, the probability of extinction, for

B(r2) > B(r1), i.e. the solution in (0, 1) of G(z) = z will be different from (36),

though it cannot be computed explicitly, let it be denoted as z̄(r2, r1, N2).

In this case, hence, the superinfection factor will be

ρ(r2, r1) =

{

1 − (z̄(r2, r1, N2))
n if B(r2) > B(r1)

0 if B(r2) ≤ B(r1).
(39)

Once the value of Ni are given and their relation with ri (remember in the lytic

case ri = ηiNi), and the laws connecting r to α, one can compute the function

ρ(α2, α1) and study the evolutionary dynamics.

Here, I wish only to remark that within-host models can, through several as-

sumptions that are indeed debatable, yield the superinfection function ρ(α2, α1);

this will depend on the virus life cycle, but will always be of the non-differentiable

type.
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5 Conclusion

In this chapter I have considered the evolution of virulence assuming the exis-

tence of a fundamental trade-off between transmissibility and virulence, generally

with transmissibility an increasing and concave function of virulence. Using the

adaptive dynamics framework (Metz et al., 1996), the evolutionary dynamics

in the simple model of Anderson and May (1982) is well understood: conver-

gence to the strategy α that maximizes ϕ(α) (the ‘per capita’ reproductive ra-

tio). Andreasen and Pugliese (1995) considered a variant of that model in which

density-dependence acted on mortality instead of on fertility. Then, transient

dimorphisms are possible; under the assumptions of adaptive dynamics, however,

these contract towards the unique continuously stable strategy.

A complete analysis of the model with superinfection is still missing. Prelimi-

nary results suggest that, when the function k relating virulence to superinfection

rates is differentiable, a unique continuously stable strategy for virulence α∗ exists;

in this model too, dimorphisms are only transients. However, the evolutionary

dynamics may depend on the size of mutations, since α∗ is only locally uninvad-

able. When the function k is not differentiable, evolutionary dynamics can be

more complex, since branching points may exist.

A relevant emphasis has been given in this Chapter to how trade-off functions

can be built from models describing within-host pathogen dynamics ((see also

the recent review by Mideo et al., 2008). In principle, these models can help

overcoming one of the main problem of the model for superinfection discussed

here, i.e. that infected individuals are assumed to be infected with a single

pathogen strain. The approximation of quick replacement of the original strain

with the superinfecting strain seems questionable when the virulence of competing

strains is very similar, as they must be when analysing evolutionary stability.

At the moment, however, models allowing for host coinfection and considering

also transient dynamics at the within-host level, seem to be beyond the power
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of analytical methods, except for very simplified cases (Coombs et al., 2007,

Alizon and van Baalen, 2008); perhaps more general cases could be addressed

only through simulation studies.

As stated at the beginning, the evolution of virulence is very actively studied,

both experimentally (Ebert and Mangin, 1997, Ebert, 1998, Ferguson et al., 2003,

Koella and Agnew, 1999) and theoretically. I have completely disregarded, for

lack of space and of the necessary competence, several fundamental problems,

some of which I wish to quote here, together with some references to see for

further information.

All models considered here follow the adaptive dynamics paradigm, i.e. that

mutations are rare enough that population dynamics has reached an equilibrium,

before the following advantageous mutation arises. This assumption appears

questionable for many pathogens, especially RNA viruses. A different approach,

described by Day and Proulx (2004), is to assume that mutations are frequent

enough to describe, at each time, a population as a continuum in genetic space,

whose dynamics is described through mutation-selection equations. In the sim-

plest case (corresponding to the model studied in Section 2, they obtained evolu-

tion to a stationary distribution (in virulence space) centred at a point very close

(but not identical) to the continuously stable strategy found through adaptive

dynamics. In this case it would be possible that the evolutionary equilibrium is

approached in an oscillating way. It would be interesting to extend this approach

to more complex cases.

An aspect that has received a great attention in the ecological literature

(Dieckmann et al., 2000) but has been ignored here is the spatial structure of

the host population. Several papers (Haraguchi and Sasaki, 2000, Boots and

Sasaki, 1999, Webb et al., 2007) have studied the evolution of virulence in a spa-

tially structured population; the qualitative predictions of these models, i.e. that

virulence should be lower when most interactions are local, have also received

experimental support (Boots and Mealor, 2007).
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All aspects of pathogen evolution concerning avoidance of recognition by the

immune system, or more generally adaptation to hosts’ defenses, have not been

considered here. While generally these topics have been studied with a variety of

approaches (Andreasen et al., 1997, Recker et al., 2004, Restif and Grenfell, 2006),

a paper using adaptive dynamics in this area too has recently been published

(Adams and Sasaki, 2007).

Finally, as discussed in the beginning, virulence is actually a property of the

interaction between host and pathogen, rather than of pathogen itself. There

exists by now an abundant literature on the evolutionary dynamics of host re-

sistance and tolerance (Boots and Bowers, 1999, Roy and Kirchner, 2000, Restif

and Koella, 2004, Miller et al., 2005). Clearly, a coevolutionary treatment would

be needed for a proper understanding of the topics; while there exist several pa-

pers (Andreasen and Christiansen, 1993, Sasaki, 2000, Bennett and Bowers, 2008)

dealing with polymorphic (sometimes with a complete genetical model) hosts and

pathogens, mainly with the aim of explain evolutionary cycles, to my knowledge,

only the papers by Gilchrist and Sasaki (2002) and by Dieckmann (2002) discuss

virulence evolution within this setting.

I hope the present review may help in setting a basis on which much more

complex problems can be studied.
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