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1 Introduction

The evolution of virulence is a very active area of research (Ewald, 1994; Read,

1994; May and Nowak, 1994; Nowak and May, 1994; Lipsitch et al., 1995; Lipsitch

and Nowak, 1995; van Baalen and Sabelis, 1995; Levin, 1996; Ebert and Herre,

1996; Frank, 1996; Stearns, 1999; Dieckmann et al., 2000); beyond the theoretical

interest of the subject, this research area may provide advice in the design of

therapy and vaccines (Bull, 1994; Dieckmann et al., 2000). Virulence may have

different meanings (Bull, 1994); here I (like many of the cited authors) restrict

myself to a precise definition: ‘virulence’ is the parasite-induced host mortality.

The terms ‘parasite’ and ‘pathogen’ will be used here interchangablely, without

referring to any specific life form.

A parasite may also decrease a host’s fertility or well-being, but this, as long

as this does not affect its transmissibility, does not make any harm to a parasite.

On the other hand, a parasite that kills its host, kills also itself and prevents

further transmission; from this observation, the view (named ‘the common evo-

lutionary wisdom’ by Anderson and May (1982)) emerged that high virulence is

maladaptive: parasites evolve to be relatively benign, since they have no interest

in killing their host; parasites are virulent to a host only when their interaction

has not been long enough for adaptation. Support for this view came from the

devastating effects of some introduction of parasites into new hosts (Myxoma
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virus, Dutch elm disease), although Ebert and Hamilton (1996) argue that these

examples are rather the exception than the rule in the introduction of parasites.

In general, there is now good empirical evidence (Read, 1994) for virulence to

persist in long-term parasite-host associations. Furthermore, in the case of the

Myxoma virus in Australia, it is well documented that selection did not proceed all

the way to leave only avirulent strains, but stabilized instead at an intermediate

level of virulence (Fenner and Ratcliffe, 1965; Fenner, 1983)

It has been recently remarked (Poulin and Combes, 1999) that virulence is a

property of a host-parasite interaction, and not simply of the parasite. From this

point of view, it would be appropriate to study the evolution of virulence in a co-

evolutionary setting, where host resistence is also considered. However, very few

papers have analysed models for host-parasite coevolution (see, for instance, An-

dreasen and Christiansen (1993)), and most authors have restricted the analysis

to the evolution of virulence in the pathogen, as I will also do here. A justification

for this is that, usually, parasites have a much shorter generation time than their

hosts. A time-scale argument lets us consider, as a first approximation, the case

where only parasites can evolve.

A breakthrough in our understanding of the evolution of virulence occurred

in the early 80’s with the help of simple mathematical models, thanks to the

seminal papers of Levin and Pimentel (1981), Anderson and May (1982), and

Ewald (1983). Their main argument is based on the existence of a ‘trade-off’

between virulence and infectivity. This ‘trade-off’ might be mediated through

the speed of replication: fast-replicating strains may harm their hosts but at the

same time they will reach a high concentration in hosts’ tissues and secretions;

depending on the mode of transmission, they will then have a higher probability of

being transmitted to another host than slowly replicating strains. Some empirical

basis for this trade-off is discussed in (Ebert, 1998; Mackinnon and Read, 1999a).

A trade-off funcion is explicitly built from the experimental data on Myxoma in

Dwyer et al. (1990).
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In this chapter I will follow a narrow route through the vast range of issues and

models of virulence. Considering only the virulence–transmissibility trade-off, the

main questions I will address will are the expected path of virulence evolution,

and the possibility for several parasite strains to coexist at an evolutionarily stable

state.

The analysis of this chapter will be mainly set in the framework of adaptive

dynamics (Metz et al., 1996; Geritz et al., 1997) as presented in previous chapters.

I will especially exploit ‘pairwise invasibility plots’ showing the sign of the invasion

coefficients sx(y) where x and y represent the virulences of different parasite

strains.

In Sections 2 and 3, I will examine the basic model of Anderson and May (1982),

restating their results in this framework. In Section 4, I will investigate models

with superinfections, where it is possible that a strain can infect also hosts that

are already infected with another strain. In Section 5, I will describe a system

in which polymorphic populations are modelled explicitly, in contrast to the ap-

proach of adaptive dynamics; I will restrict the analysis, however, to a system

corresponding to the basic model of Anderson and May (1982). Finally in Section

6, some other approaches and open problems will be examined.

2 The basic epidemic model

The starting point in the adaptive dynamics approach is a model describing the

interaction of different parasite types. This model will be a modification of a

standard models for epidemics (Bailey, 1975; Hethcote, 1976) with a single type

of parasites. To keep the models as simple as possible, while retaining the features

necessary to discuss the evolution of virulence, I will discuss only SI models: hosts

are born susceptible (S) to infection, then may become infected (I) and, if so,

cannot recover (see Box 1 for more explanations on epidemic models). The model

includes disease-related deaths, since the interest lies in the lethal effects caused
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by the pathogen: thus host population size N will be a dynamic variable instead

of a fixed constant.

The equations (its assumptions are presented in Box 1) are

dS

dt
= b(N)N − µS − βSI (1a)

dI

dt
= βSI − µI − αI (1b)

where β is the contact rate (see Box 1), µ natural death rate, α parasite-induced

death rate (= ‘virulence’) and b(N) the birth rate, assumed to be density-dependent.

In absence of the epidemic, the population size would converge to its carrying ca-

pacity K, which is found by solving the equation b(K) = µ. The assumption

of density-regulation through hosts’ fertility is the same as in Bremermann and

Thieme (1989) and differs from the simpler assumption of a constant birth rate

b (Anderson and May, 1982) which entails exponential growth in absence of the

epidemic.

The behaviour of equation (1) can be understood in terms of the ‘basic re-

productive ratio’ R0 of the parasite, representing the expected number of new

infections caused by a single infected individual when the whole population is

susceptible (see Box 2 for details). In our case, R0 is given by

R0 =
βK

µ+ α
. (2)

It is clear that, if each infective host infects, on average, less than one new host

(R0 < 1), the epidemic will fade out, since not enough new cases are produced.

If, on the contrary, an infective host infects on average more than one other host

(R0 > 1), the epidemic will spread, at least as long as the number of susceptibles is

large enough. For system (1), the epidemic will then settle at a globally attractive

endemic equilibrium with a total host population N̄ and a susceptible population

S̄. At the equilibrium each infective will on average infect one susceptible over

its expected life time, so that
βS̄

µ+ α
= 1. (3)
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Box 1. Epidemic models.
Epidemic models generally divide the host population into indi-
viduals that are currently infected and infectious (I), individuals
that are not infected but are susceptible to the infection (S) and
often individuals that are recovered from the disease and immune
to further infection (R); the dynamics of the parasites is described
simply as the dynamics of infected hosts. Within-host dynamics,
in particular, are not modelled explicitly.
A lucid presentation of basic epidemic models is given, for instance
in Hethcote (1989); here I just outline the main ideas. If the in-
fection confers permanent immunity, the dynamics of the infec-
tion is S → I → R (susceptible individuals become infected and
then immune). Without immunity the dynamics of the infection is
S → I → S (susceptible individuals become infected and then sus-
ceptible again). A latency period after infection is often modelled
by introducing the class of exposed (E), individuals that have been
infected but are not yet infectious, obtaining a S → E → I → R
dynamics.
New infections are assumed to occur because of encounters between
infectious and susceptible individuals; assuming a mass-action law
for encounters, the rate of new infections is βSI, where the constant
β is called mixing rate. When population size N is variable, several
authors (for instance de Jong et al. (1995)) argue that β will vary
as well; they defend the view that, usually, the mixing rate will
have the form β = λ

N
(they call this ‘true mass-action law’) where

λ is the average number, assumed to be constant, of individuals
contacted by one individual in unit time. I will use, instead, the
assumption of constant β (‘standard mass-action law’), mostly for
consistency with previous analyses on virulence. Use of the ‘true
mass-action law’ would change the algebraic details, but not the
qualitative results in strain competition.
In the simple models discussed here, one needs also to consider
rates of birth (all individuals are supposed to be born susceptible),
of death, and of recovery.
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Box 2. Computation of the basic reproductive ratio R0.
The basic reproductive ratio R0 is the average number of individ-
uals infected by a single infective under some given and constant
environmental conditions (often an equilibrium population with all
susceptibles).
If the rate at which an infectious individual infects other individuals
(the ‘effective contact rate’) does not depend on the time elapsed
since infection, we can obtain R0 simply from multiplying the ‘ef-
fective contact rate’ (β times the absolute number of susceptibles)
with the expected time spent as infective.
In models (such as those consisting of ordinary differential equa-
tions) where future dynamics depends on present state only, and
not on past history, the time spent in any state (for instance as an
infective) will follow an exponential distribution; thus, the expected
time spent as infective is simply the inverse of the exit rate from
that state. If exits for different causes are possible (recovery, ‘nat-
ural’ death, parasite-induced death), their rates have to be added,
yielding the total exit rate.
For instance in model (1), natural mortality rate µ and disease-
related death rate α have to be added, giving an expected time
as infected equal to 1/(µ + α). When examining whether a para-
site is able to establish itself, we consider a completely susceptible
population at carrying capacity K, thus obtaining (2).
When we discuss the success of the invasion of a parasite 2 in a
population where parasite 1 is already established, the environment
for parasite 2 is the population at the endemic equilibrium with
parasite 1, so that the number of susceptibles is S̄1; the expected
time as infective is as before 1/(µ+ α2), so that we obtain (6).
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The invasion of an established epidemics by a ‘new’ parasite type can be

studied by extending model (1) to allow for two different types of infected indi-

viduals I1 and I2. While other assumptions are possible (see Section 4), I assume

here that an infected individual cannot be further infected. We thus obtain the

following system of differential equations

dS

dt
= b(N)N − µS − β1SI1 − β2SI2 (4a)

dI1

dt
= β1SI1 − µI1 − α1I1 (4b)

dI2

dt
= β2SI2 − µI2 − α2I2 (4c)

with N = S + I1 + I2.

A complete analysis of (4) is presented by Bremermann and Thieme (1989) for

n competing strains. Here I summarise the relevant results, with some intuitive

explanations. It must be kept in mind that, while the present analysis relies on

local stability analysis, the global picture is the same (Bremermann and Thieme,

1989), so that, in this case, consideration of pairwise invadibility provides all

necessary information for predicting outcomes of competition between parasite

strains.

The invasion fitness sx(y) can be computed linearizing (4) at the endemic

equilibrium for only one strain; letting s1(2) denote the invasion coefficient of

parasite 2 (with parameter values α2, β2 . . .) into a population at equilibrium

with parasite 1, we have

s1(2) = β2S̄1 − (µ+ α2). (5)

It is more transparent, however, to use a suitable reproductive ratio: specifically,

let R1
0(2) be the expected number of new infections caused by a single individual

infected with strain 2 when the host population is at its endemic equilibrium for

strain 1. Strain 2 will invade into a population at equilibrium with strain 1 if

R1
0(2) > 1; it cannot do so if R1

0(2) < 1. This is proved in a general setting, where

7



      

the definition of R0 is more complex, by Diekmann et al. (1990); they also show

that the condition on R0 is equivalent to a condition on invasion fitness.

Following the computations outlined in Box 2, the invasion condition can be

written as

R1
0(2) =

β2S̄1

µ+ α2

> 1. (6)

Note from (5) that, in this case, a very simple relation holds between R1
0(2) and

s1(2): s1(2) = (µ+ α2)(R
1
0(2)− 1).

In order to compare different strains, it is convenient to define a ‘per capita’

reproductive ratio

Ri =
βi

µ+ αi
. (7)

Since we follow the ‘standard mass-action law’ (Box 1), the basic reproductive

ratio of strain i when there are S susceptibles in the population is RiS.

Now (6) reads R2S̄1 > 1, while (3) for S̄1 yields R1S̄1 = 1. Hence, the invasion

of strain 2 will be successful if R2 > R1.

3 Optimal virulence

I now turn to the main topic of this chapter, the evolution of virulence, identifying,

as discussed in the Introduction, virulence with parasite-induced death rate α.

Several conclusions can be drawn from the fact that s2(1) > 0 if and only if

R2 > R1.

First of all, we see that, if R2 > R1, strain 2 can invade strain 1 but strain

1 cannot invade strain 2; thus mutual invasibility is impossible and coexistence

may occur only as a transient or in the infinitely unlikely case where R1 = R2.

Second, strain 1 cannot be invaded by any other parasite type if R1 is larger than

Ri for any other feasible strain i; in other words, an evolutionarily uninvadable

state will be found at the state that maximises
β

µ+ α
among all feasible states.

It is clear from (7) that if two types differ only in their virulence, the less viru-

lent type will have a larger R and will thus outcompete the other type. Therefore,
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we would expect an evolutionary trend toward a decreased virulence, recovering

the ‘conventional wisdom’.

However, matters are different if one assumes, following Anderson and May

(1982), a trade-off between contact rate β and virulence α: I will assume that a

relation exists that gives the contact rate β as a function of virulence α (see a)

and c) of Fig. 1). The existence of such a trade-off is a basic tenet of the current

theory on the evolution of virulence, as discussed in the Introduction.

Since β is now envisaged as a function of α, and µ is independent of parasite

strategy, the quantity R of (7) can be written as a function of virulence α

R(α) =
β(α)

µ+ α
. (8)

The invasibility condition R2 > R1 shows that an evolutionarily uninvadable state

will be found at a maximum of the function R(α). This result is a consequence

of the fact that, in this model, for a parasite the environment is one-dimensional:

number of susceptibles S; hence, a maximisation principle holds (Chapter ??).

The qualitative conclusions depend on the shape of the function β(α): if it

is a concave function (like in Fig. 1a), which seems likely because of the ‘law

of diminishing returns’ (Lipsitch et al., 1995), there exists a single maximum of

R(α). Simple arguments from one-dimensional adaptive dynamics show that, in

this case, the value of α at which R is maximised is a final state for evolutionary

dynamics (a ‘continuously stable strategy’ (Eshel, 1996)). Often, this strategy

will correspond to an intermediate virulence (as shown in Fig. 1a)-b)), but it is

also possible to have the maximum at α = 0 (‘avirulence’).

If the function β(α) is convex, there are no maxima of the ‘basic reproductive

ratio’ R, but often a single minimum; this, in the framework of adaptive dynamics,

is an evolutionary repellor, i.e. a separating point for evolutionary trajectories: if

the initial virulence α is lower than a threshold value, evolution will drive virulence

to 0; if it is above, virulence will increase forever in the course of evolution. A

more reasonable assumption is that β(α) is convex only within a certain range of
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Figure 1: a) An example of a concave function: β(α) = Cα
A+α +B and the corresponding R(α);

b) the ‘invasibility plot’ for the functions in a); α2 can invade α1 when (α1, α2) is in the black
region;
c) an example of a concave–convex function: β(α) = 1

A+Be−Cα , and the corresponding R(α);
Parameter values are A = 0.5, B = 10, C = 0.8;
d) the ‘invasibility plot’ for the functions in c).
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virulence, and concave beyond that (like in Fig. 1c). In this case, evolution could

tend toward high or low virulence, depending on initial conditions.

4 Superinfection

It has been shown (Levin and Pimentel, 1981; Hochberg and Holt, 1990) that

one mechanism leading to parasite coexistence is that of superinfection (see Box

3). Specifically, if the strain with lower R0 is capable of superinfecting the other

more often than vice versa, then coexistence may occur. The models are actually

similar to models used for describing coexistence of plant species in patches of

suitable habitat (Tilman, 1994).

In this section, I will perform, in the same spirit as in the previous sections,

a mathematical analysis of the evolutionary dynamics of virulence when super-

infection is possible. A very interesting analysis of the problem, mainly through

numerical computation, is presented by Adler and Mosquera (1998), who consider

coinfection, and superinfection as a limiting case of coinfection. I will present here

some analytical results when possible, and show the similarities and differences,

in assumptions and results, with Adler and Mosquera (1998). However, I will

not discuss here coinfection models (see Box 3) because of their complexities. In

fact, the state space of these models can be very large, since one should allow

for hosts being infected with any combination of strains (a similar problem is

tackled by Lin et al. (1999) in a model for influenza). To cope with these prob-

lem while maintaining the possibility of coinfection, some authors (van Baalen

and Sabelis, 1995; Mosquera and Adler, 1998) do not allow further infections of

doubly-infected hosts.

As in the previous section, we will consider several parasite strains differing

in the value of virulence α, i. e. the disease-induced death rate. The density of

infected individuals carrying strain α at time t is denoted by i(t, α). As before,

we assume that the contact rate β depends on the virulence level according to
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Box 3. Superinfection and coinfection.
The models of competition between different pathogen strains dis-
cussed in the previous sections assume that infection with one strain
provides hosts with complete protection against infections by other
strains.
Levin and Pimentel (1981) introduced the possibility of superinfec-
tions: a host infected with strain 1 may become infected by strain
2 upon contact with a host already infected with strain 2. It is
further assumed that, in this case, the host will lose the previous
infection with strain 1; thus, no host will be infected with more
than one strain at the same time.
Following the same considerations as in Box 1, the rate at which
such superinfections of strain 1 by strain 2 occur will be propor-
tional to the product I1I2 if Ii is the density of hosts infected with
strain i. It is convenient to express the proportionality constant as
the product of the contact rate β2 with a scaling factor ρ21. Thus
the rate at which such superinfections of strain 1 by strain 2 occur
is assumed to be β2ρ21I1I2. Conversely, superinfections of strain 2
by strain 1 occur at rate β1ρ12I1I2.
Generally, it is assumed that the constants ρij are smaller or equal
to 1: already infected individuals are not easier to infect than sus-
ceptible ones. This constant ρij is called the superinfection factor.
This model of superinfection consists of several mechanisms at the
level of the individual host: necessarily, a host already infected with
strain 1 that is attacked by strain 2 will go through a period where
both strains are present in its body. Superinfection models assume
that this period is so short to be negligible and eventually only one
strain will persist.
Coinfection models assume (more realistically) that hosts may be
infected with more than one strain at the same time. A host already
infected with strain 1 that is attacked by strain 2 will become a host
infected with strains 1 and 2; afterwards, it may persist in this state
or (because of competition between strains) revert to being infected
with only one strain.
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a given function β(α). Since also superinfections are now allowed, one needs a

function relating virulence to superinfection rates. In the notation of Box 3, we

need to know how the superinfection factor ρij depends on the virulence of the

infecting strain αi and of the strain αj that is being infected.

Nowak and May (1994) used the following assumption: if α2 > α1, then ρ21

is a positive constant; vice versa, if α2 < α1, then ρ21 = 0. A consequence of

this assumption is that any resident strain can be invaded by any other strain

with infinitesimally larger virulence; no strain will ever be evolutionarily stable,

and no limit to similarity can be found, unless constraints on available strains are

introduced (see also Kinzig, Levin and Pacala (1999)). These consequences may

be regarded as being rather pathological.

Mosquera and Adler (1998) have considered in detail more general formula-

tions for the superinfection law. Following their presentation, we assume that

there exists a function ρ(α2, α1) that gives the superinfection factor of a strain

with virulence α1 from a strain with virulence α2. Hence, superinfections of a

strain with virulence α1 from a strain with virulence α2 occur at rate

β(α2)ρ(α2, α1)i(t, α1)i(t, α2). The equation for i(t, α) is completed by assuming a

death rate equal to µ (the natural death rate) plus α (the parasite-induced death

rate), and by excluding other exits from the infected state. The equations when

strains α1, . . . , αn are present are then, using the abbreviation ij(t) = i(t, αj),

d

dt
ij(t) = β(αj)ij(t)


S(t) +

∑

k 6=j
ρ(αj, αk)ik(t)




− ij(t)(µ+ αj)− ij(t)
∑

k 6=j
β(αk)ρ(αk, αj)ik(t) for j = 1, . . . , n

(9)

As before, we assume that β(α) is increasing with α (higher virulence allows

for higher transmissibility). To simplify the analysis, we will assume that the ‘per

capita’ reproductive ratio R(α), defined in (8), will have a single maximum (see

Fig. 1a,b).

As for the function ρ(α2, α1), for reasons discussed in Box 4, I will always

assume that ρ(α2, α1) = k(α2 − α1) with k an increasing function with values
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ranging between 0 and 1. I will then consider the two following cases (illustrated

in Fig. 2 through some examples) that do not exhaust all possible choices, but

that should together cover most of the interesting results:

-1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

k

 k1(x) 
 k2(x) 
 k3(x) 

Figure 2: The functions k used in the numerical examples below. k1 and k2 are differentiable
function, both of the form k(x) = k0/[k0 + (1− k0)e

−Lx/(2k0(1−k0))]; k1(x) has k0 = 0.3, L = 1;
k2(x) has k0 = 0.2, L = 10. k3(x) is not differentiable and is defined as follows: k(x) = 0 for
x ≤ 0; k(x) = min{10x(1 + x), 1} for x > 0.

1. k is differentiable with k(0) > 0 and k′(0) ≥ 0 (the differentiable case).

2. k(t) = 0 if t ≤ 0; k is differentiable from the right in 0 and k′+(0) > 0 (the

non-differentiable case).

It is simpler to rewrite (9) using the notation

δ(α2, α1) = β(α2)ρ(α2, α1)−β(α1)ρ(α1, α2) = β(α2)k(α2−α1)−β(α1)k(α1−α2).

(10)

Then (9) become

d

dt
ij(t) = ij(t)


β(αj)S(t) +

∑

k 6=j
δ(αj, αk)ik(t)(t)− µ− αj


 j = 1 . . . n (11)

The model is completed by an equation for the susceptibles. To simplify

the mathematics, I assume exponential growth for the population in the absence

of pathogens (contrary to the previous sections, where parasite-free growth was
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Box 4. The function relating virulence to superinfection rate.
It seems likely that more virulent strains will have a faster replica-
tion rate, and thus will be better competitors within a host; thus,
it is natural to assume that the superinfection factor ρ(α2, α1) is
an increasing function of α2 and decreasing in α1 (Mosquera and
Adler, 1998).
A useful assumption is that the superinfection factor ρ(α2, α1) de-
pends only on the difference between the respective virulences,
namely ρ(α2, α1) = k(α2 − α1). This assumption is not necessary
in the analysis, but has been used in all the numerical examples I
have seen, and makes the results easier to state and understand.
Using this notation, Mosquera and Adler (1998) distinguish three
classes of functions k, according to their regularity. A first class
is that of discontinuous functions: the typical example is that of
Nowak and May (1994): k(t) = sH(t), where H is the Heaviside
function: H(t) = 1 if t > 0, H(t) = 0 if t < 0. A second class is
that of continuous but not differentiable functions. The third class
is that of differentiable functions. They show that the evolution-
ary dynamics is rather different, according to the class of functions.
Since, as discussed in the text, the model of Nowak and May with
a discontinuous function yields paradoxical consequences, I will re-
strict the following considerations to the latter two cases.
Mosquera and Adler (1998) assume that always k(t) = 0 if t ≤ 0.
Although they give some reasonable justification for this condition,
an alternative view holds that virulence affects the general trend
of superinfections, but stochastic factors (host’s health, timing and
dosage of the inoculum, etc.) influence individual infections; hence
it is possible (although perhaps unlikely) that a parasite infects a
host already infected by a more virulent strain, i.e. k(t) may be
positive also for negative t, as has always be assumed in epidemic
models with superinfections (Hochberg and Holt, 1990). This point
is relevant, since if k(t) = 0 for t ≤ 0, and the function k is differ-
entiable, then k′(0) = 0. I will not make this assumption: hence,
the differentiable case considered in the text differs from what used
in Mosquera and Adler (1998).
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assumed to be logistic). The equations for the susceptibles S(t) are thus

d

dt
S(t) = bN(t)− µS(t)− S(t)

∑

j

β(αj)ij(t). (12)

with the total population N(t) = S(t) +
∑
j ij(t).

Under the assumptions of exponential growth of the host population and

standard mass action law for infections (Box 1), any parasite strain alone can get

established into the host population; moreover, it is possible that both hosts and

parasites grow to infinity; the predictions of this model will be considered only

for parameter values where this consequence does not occur.

Let us denote by sα1(α2) the rate of increase, when rare, of strain α2 in

a population at equilibrium with strain α1. By looking at (11) with only two

strains, denoted α1 and α2, we see that

sα1(α2) = β(α2)S̄1 + δ(α2, α1)̄i1 − µ− α2 (13)

where S̄1 and ī1 represent the equilibrium levels of susceptibles and infectives

when only strain α1 is present in the population. Equation (3) can be rewritten

as

S̄1 =
µ+ α1

β(α1)
=

1

R(α1)
(14)

while (12) yields

ī1 =
(b− µ)S̄1

µ+ α1 − b
=

b− µ
R(α1)(µ+ α1 − b)

. (15)

Note that ī1 in (15) is positive and thus is realistic only when b − µ < α1. Oth-

erwise, the population size will grow to infinity, as a consequence of exponential

growth of hosts.

To determine the direction of virulence evolution, we need to compute D(α) =
∂

∂α2

sα(α2)|α2=α. One finds

D(α) =

(
β′(α) + d1(α)

b− µ
µ+ α− b

)
1

R(α)
− 1 (16)
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where d1(α) =
∂

∂α2

δ(α2, α)|α2=α. Note that d1(α) exists even if k is not differen-

tiable in 0. Specifically, we have

d1(α) =





β′(α)k(0) + 2β(α)k′(0) if k is differentiable

β(α)k′+(0) if k is non-differentiable.
(17)

An evolutionarily singular state α∗ satisfies D(α∗) = 0, and thus, with some

algebraic manipulations,

b− µ
µ+ α∗ − βd1(α

∗) +R′(α∗)(µ+ α∗) = 0. (18)

From (18) one sees that necessarily R′(α∗) < 0 so that α∗ has to stay to the right

of the maximum of the function R(α) (see Fig. 1). In agreement with intuitive

expectations, the evolutionarily singular type in the presence of superinfections

will thus be more virulent than the optimal type in the absence of superinfections.

A first question one may ask is whether an evolutionary singular state always

exists and is unique. I could investigate this question only by choosing a specific

form for the function β(α); here, I considered two possible functional forms, both

in the class of concave functions for which the basic reproductive ratio has a

unique maximum:

a) β(α) = Cαa (0 < a < 1) or

b) β(α) = C α−α0

α
.

The first class corresponds to a power law, a standard assumption in ecophysiol-

ogy. The second class has been used (with C = 1 and α0 = 1)) by Mosquera and

Adler (1998).

By computing (18) explicitly in the two cases and studying the behaviour of

the functions involved in the equation, one obtains the following condition.

Let L = 2k′(0) in the differentiable case; or L = k′+(0) in the non-differentiable

case. If

(b− µ)L < 1− a in case a) or (b− µ)L < 1 in case b) (19)
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there exists a unique singular state α∗. On the other hand, if (19) does not hold,

D(α) > 0 for all α; hence virulence will evolutionarily increase to infinity.

The conclusion when (19) does not hold appears paradoxical. Indeed, it is

a consequence of the assumption of exponential growth of hosts: even infinitely

virulent strains can maintain themselves in an exponentially growing populations;

if k′(0) is large enough, more virulent types have a large advantage at superin-

fections so that they can always invade a resident strain. Introducing density

dependence in the model prevents both population size and virulence from in-

creasing to infinity. It seems likely, but it is difficult to prove analytically, that

a unique ESS will exist in this case as well (a numerical example that appears

very similar to the cases without density dependence is shown in Fig. 3b). In all

further computations I will then assume that (19) holds.

The techniques of Geritz et al. (1998) allow to classify the evolutionary dy-

namic properties of α∗ according to the sign of the second derivatives of s at

α1 = α2 = α∗ (Chapter ??). However, if k is not differentiable in 0, the function

s is not twice differentiable at α∗: derivatives from the right are different from

derivatives from the left.

Analytical results are thus easier to obtain for the differentiable case. In this

case, one can draw two conclusions. First, for any function β(α),
∂2s(α1, α2)

∂α2
2

|α2=α1=α∗ +
∂2s(α1, α2)

∂α2
1

|α1=α2=α∗ > 0 holds. According to Geritz et al. (1998),

this property implies that there will exist pairs of mutually invasible strains on

opposite sides of α∗. Dimorphisms thus arise naturally in this model. Second, for

the two specific choices for β(α) introduced above, then
∂2s(α1, α2)

∂α2
2

|α2=α1=α∗ < 0.

This implies that α∗ is always uninvadable, or evolutionarily stable (at least lo-

cally, i.e. from strains with virulence close to α∗). Therefore, at least under the

assumptions considered, this superinfection model yields only transient dimor-

phisms shrinking towards a unique evolutionarily stable state.

We now construct some ‘pairwise invasibility plots’ by numerical computa-

tions. This is needed to establish global invasibility relations, since the previous
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Figure 3: Some ‘invasibility plots’ for model (11) with β(α) = C α−α0

α ; α2 can invade α1 when
(α1, α2) is in the black region. In a) k(x) = k1(x) of Fig. 2; in b), c) and d) (which is a detail
of c)) k(x) = k2(x) of Fig. 2; In e) and f) (which is a detail of e)) k(x) = k3(x) of Fig. 2.
Common parameter values to all parts are α0 = 1.2544, and C = 0.02. In b) birth rate depends
on density according to the law b(N) = 1− 2 · 10−4N and µ = 0.8; in all the others b = 1 and
µ = 0.95.
In d) the dotted line is the reflected image of the boundary of the invasibility regions; when
(α1, α2) lies between the dotted line and the invasibility boundaries, the states α1 and α2 are
mutually invasible.
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analytical considerations yield only local information. In Fig. 3 (a), c) and d), I

present some examples with β(α) = C α−α0

α
(the case β(α) = Cαa gives very sim-

ilar results). From all graphs it is evident that this superinfection model provides

little room for polymorphisms. The plot in Fig. 3a is hardly distinguishable from

that in Fig. 1. That in Fig. 3c is more complex, but still hardly allows for strain

coexistence. This global picture seems not to follow any of the patterns estab-

lished in (Geritz, Kisdi, Meszéna and Metz, 1998); moreover, it is not clear that

the singular state is evolutionarily stable, as proved above. However, when one

looks at a detail of the same picture (Fig. 3d), it appears that very close to the

singular state the plot is equivalent to that of Fig. 3a, and that the singular state

is indeed evolutionarily stable. Note however that this stability is only local, in

the sense that mutants with a very similar virulence cannot invade, whereas mu-

tants with a somewhat smaller virulence can invade: the pattern of evolutionary

dynamics will then depend on the size of mutations. One also sees from Fig. 3d

that the region of coexistence is not so small locally; it is theoretically possible

that there exists a pair of coexisting strains that is uninvadable from any mutant;

however, such a dimorphism would hardly be recognizable empirically, since the

two strains would be very similar to each other.

The case when k(x) is not differentiable is harder to approach analytically.

For instance, one can see that

lim
α2→α∗+

∂2sα1(α2)

∂α2
2

|α1=α∗ = β′′(α∗)
µ+ α∗

β(α∗)
+ 2β′(α∗)k′+(0)

b− µ
α∗ − b+ µ

µ+ α∗

β(α∗)

+k′′+(0)
b− µ

α∗ − b+ µ

µ+ α∗

β(α∗)
(µ+ α∗) (20a)

lim
α2→α∗−

∂2sα1(α2)

∂α2
2

|α1=α∗ = β′′(α∗)
µ+ α∗

β(α∗)
− k′′+(0)

µ+ α∗

β(α∗)
(µ+ α∗) (20b)

where k′+(0) and k′′+(0) are the first and second right derivatives of k at 0. The

singular state α∗ will be (locally) uninvadable from the right when expression

(20a) is negative, will be uninvadable from the left when expression (20b) is

negative. It is thus possible that α∗ will be invadible from the left and not from
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the right, or vice versa, both from the right and from the left, or from neither

direction. According to the choice of the function k, all these possibilities can

be realised: from (20), one sees that an important factor is the sign of k′′+(0); in

contrast, the value of k′′(0) did not enter the formulae for ∂2s(α1,α2)
∂α2

2
|α2=α1=α∗ in

the differential case.

An example of ‘pairwise invasibility plot’ is shown in part e) of Fig. 3. It

can be seen that the plot becomes very complex, and locally (f) of Fig. 3) very

different from that of part d), although the functions k2 and k3 are very close to

each other (Fig. 2). Other (but still similar) non-differentiable functions give rise

to ‘pairwise invasibility plots’ that are locally rather different. On the other hand,

the global pictures are similar between each other, and also to that obtained for

sharply bent but differentiable functions (c) of Fig. 3).

To summarise the results of this section, we stress that some conclusions seem

to be robust to changing the details of the function k: there exists a unique

singular state α∗ for virulence, and this α∗ is always larger than the optimal

virulence without super-infections. Starting from low values of virulence, small

mutations and selection will bring the virulence close to α∗. When α∗ is much

larger (because superinfections are likely) than the optimal virulence without

superinfections, then mutants with virulence much smaller than α∗ can invade.

Thus, although in the strict adaptive dynamics framework (Metz et al., 1996),

stable dimorphisms appear unlikely, coexisting strains may occur often if larger

mutations are allowed. In these models, the environment for a parasite has several

dimensions: number of susceptibles and number of individuals already infected

by other strains; hence, coexistence of different strains is not unexpected.

On the other hand, the fine detail of evolutionary dynamics around α∗ will

depend on the exact shape of the function k, which is probably beyond any

possibility of empirical investigation (see Fig. 2). Since the model itself is only an

approximation of more complex processes, investigation on the exact dynamics

close to the singular state α∗ has mainly a mathematical interest.
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5 Evolutionary dynamics when mutations are

frequent

The approach of adaptive dynamics assumes that the successful invasion of favour-

able mutations is rare relatively to the selection process: therefore the resident

population can always settle to its ecological equilibrium (or non-equilibrium

attractor) before the next mutation comes in. However, at least for RNA-viruses,

mutations may occur at the same time scale as epidemiological processes (Miralles

et al., 2000), and the pathogen population can be better described as a “cloud” in

the space of genotypes. It may be then worth studying the evolution of virulence

in polymorphic resident populations.

Following the approach pioneered by Kimura (1965) in population genetics, we

consider a one-dimensional continuous space for pathogen genotypes x; infected

hosts are classified according to the value of the infecting genotype (we still keep

the simplifying assumption that each host is infected by a single strain at any

time), and the whole infected population at time t is thus characterized by a

density distribution i(x, t). Mutations of pathogen genotypes (say from x to

y) occur randomly, and then they take over the host completely: basically, we

assume that new mutations either go extinct quickly, or take over the host in

which they occur; we can then restrict attention to mutations that succeed in

taking over the host.

In the limit in which mutations are infinitesimally small, and occur infinitely

often, mutations can be described by a diffusion operator (like Brownian motion

is a limit of random walks). If mutations occur uniformly in genotypic space, their

emergence is characterised by a single value γ, the mutation rate. The change in

the distribution of viral genotypes due to mutation can then be described as

∂i

∂t
= γ

∂2i

∂x2
.

Virulence is assumed to be a function of the genotypic value, α = α(x). We

assume that α(x) is a monotonic function, and choose it increasing. Alternatively,
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one could start from the phenotypic space of virulences α and allow for a non-

uniform mutation rate. It is then possible to dilate and contract the virulence

scale α obtaining an abstract space where mutations are uniform. Thus, the

assumption of uniformity of mutations in the (somewhat fictitious) genotypic

space is quite reasonable.

Changes in the composition of the host population other than those resulting

from pathogen mutations will follow the epidemiological models discussed in the

previous sections. We restrict ourselves to the simplest case discussed in Section

2, where it turned out that evolution brought virulence towards a level α∗ that

maximised R0. We let µ be the natural death rate of hosts, and b, the birth

rate, depend on population size N according to a decreasing function b(N): the

carrying capacity K will be the value at which b(K) = µ. Finally, we assume a

trade-off between transmission rate β and virulence α, namely β = ϕ(α); letting,

as assumed above, α = α(x) and thus β = ϕ(α(x)) = β(x), we obtain the

following equations

dS

dt
= b(N)N − µS − S

∫ +∞

−∞
β(y)i(y, t) dy (21a)

∂i(x, t)

∂t
= γ

∂2i

∂x2
+ Sβ(x)i(x, t)− (µ+ α(x))i(x, t) (21b)

with I(t) =
∫ +∞

−∞
i(y, t) dy and N(t) = S(t) + I(t). Boundary conditions need to

be added to this system of equations. A natural condition is limx→±∞ i(x, t) = 0

(there are no pathogens infinitely away from the optimal type). Notice, however,

that this condition poses some mathematical subtleties that we will ignore here.

The main analytical result obtained (Pugliese and Andreasen, in prep.) on

system (21) concerns its stationary solutions: there exists exactly one positive

stationary solution when a threshold condition (written in terms of the principal

eigenvalue of a Sturm-Liouville problem is satisfied. At the stationary solution,

the infectives are distributed in the genotypic space x as the principal eigenfunc-

tion of the same Sturm-Liouville problem. Numerical approximations are neces-

sary to follow the evolution in time of the epidemics, as well as the stationary
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distribution, an example of which is presented in Fig. 4.
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Figure 4: a) The numerical solution i(x, T ) of system (21)-(21) at time T = 100 together with
the function R(x). I used the functions b(N) = 1 − N · 10−4, µ = 0.8, γ = 0.01, α(x) =
2x + 0.16x2, ϕ(α) = −0.125 +

√
(0.125)2 + 0.0025α, so that β(x) = 0.02x. Initial values were

S(0) = 500, i(t, x) distributed according to a normal distribution (total mass equal to 1) of
mean 2 and variance 0.2.
b) The same figure as in part a), except that virulence α is on the abscissa, showing also α∗.

It is then helpful to have a simpler system, passible of analytical investigation,

which approximates (21)-(21). The variables of the approximating system will

be the number of susceptibles S(t) and the moments of order 0 to 2 of i(x, t),

I(t) =
∫ +∞

−∞
i(x, t) dx (22a)

M(t) =
1

I(t)

∫ +∞

−∞
xi(x, t) dx (22b)

V (t) =
1

I(t)

∫ +∞

−∞
(x−M(t))2i(x, t) dx (22c)

that represent, respectively, the total number of infective individuals, the mean

value of virulence, and the variance of virulence, at time t.

To obtain a closed system in these variables, we basically follow the method

of moments (Bolker and Pacala, 1997), with two main assumptions:

• i(x, t) follows a normal distribution at any time t. This approximation is

widespread in quantitative population genetics and other fields, and can be

sometimes justified by a central limit theorem.

24



      

• α(x) and ϕ(α) can be approximated by a second-order Taylor expansion at

x = M(t).

By differentiating I(t), M(t), and V (t), and then using these assumptions,

one obtains:

dS

dt
= b(N)N − µS −

(
β(M) +

β′′(M)

2
V

)
SI (23a)

dI

dt
=

(
β(M) +

β′′(M)

2
V

)
SI −

(
µ+ α(M) +

α′′(M)

2
V

)
I (23b)

dM

dt
= α′(M) (ϕ′(α(M))S − 1)V (23c)

dV

dt
= 2γ + (β′′(M)S − α′′(M))V 2. (23d)

with N = S + I and β′′(M) = ϕ′′(α(M)) (α′(M))2 + ϕ′(α(M))α′′(M).

This system may still look rather complex, but a partial analysis is possible.

First of all, by setting the right hand side of (23) equal to 0 and some algebra, one

sees that, under reasonable assumptions, there exists a unique positive equilib-

rium if and only if a threshold condition (which is rather complex and unintuitive)

is satisfied.

Some qualitative properties of such an equilibrium (S̄, Ī , M̄ , V̄ ) can also be

established, in comparison to the ‘optimal’ virulence α∗ arising from adaptive

dynamics. In order to do this, we follow the idea of Lenski and May (1994) of

separating epidemic and evolutionary dynamics: if pathogens have a fixed viru-

lence α; epidemic dynamics will bring the number of susceptibles to an equilibrium

value S̄(α), that we may consider (from the point of view of the pathogen) as

unused resource. Vice versa, if the number of susceptibles were fixed to a num-

ber S, evolutionary dynamics would bring virulence to the level α̂(S) (‘optimal

response’) that has the highest growth rate. Bringing together the scales, the op-

timal virulence α∗ has two properties: it is the optimal response to the resource it

leaves, i.e. α∗ = α̂(S̄(α∗)); and it minimises the unused resource (S̄(α∗) < S̄(α)).
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Figure 5: a) Values of the number of susceptibles (S) and the number of infectives (I) for
the approximate system (23) compared with those (S PDE and I PDE) of the exact system
(21)-(21). Everything as in Fig. 4; initial values for the approximate system are S(0) = 500,
I(0) = 1, M(0) = 2, V (0) = 0.2.
b) Values of the mean virulence (M or M PDE) and of the variance (V ) for the same systems
of part a). The values of V for the exact and approximate system are indistinguishable.

Letting x∗ be the genotype that maximises R0, so that α∗ = α(x∗), it can

be proved that S̄ > 1/R(x∗) = S̄(α∗); in words, the equilibrium number of

susceptibles will always be higher, because of mutations, than the minimum level

possible for a pure strain.

Moreover, it can be proved that M̄ > x∗, i.e. the mean virulence is higher

than the ‘optimal’ virulence. A verbal explanation for this perhaps unexpected

inequality starts from S̄ > S̄(α∗); it can also be seen that the optimal response

is increasing with the number of susceptibles, i.e. if S > S̄(α∗), the evolutionary

response is higher than the optimum (α̂(S) > α∗). Because of frequent mutations,

no monomorphic optimal response is possible; however, if the distributions are

symmetrical, realised values of virulence are centred around those of the mean

genotype α(M̄); thus, α(M̄) should be higher than α∗. Indeed, in the simplifying

assumptions used to derive model (23) it is implicit that i(x, t) is symmetrical

and R(x) not too asymmetrical.

Notice that in the exact model R(x) may be very asymmetrical; then, if, for

instance, R(x) drops more quickly to the left of x∗ than to its right (Fig. 4), it
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is much more disadvantageous being brought by mutations to the left of x∗, and

it is intuitively expectable that the centre M̄ of the stationary distribution must

be larger than α∗; vice versa, if R(x) drops more quickly to the right of x∗ than

to the left, there is a selection for the centre M̄ to move to the left of x∗. If the

asymmetry is very strong, this factor may be more important than the previous

argument, and it is possible that, in the exact model, at equilibrium α(M) is

smaller than α∗.

How well does the approximate system approximate the original system? Al-

though no analytical answer is available, it seems that the approximation is good,

especially when the functions α(x) and β(x) are close to second-order polynomial

(see Fig. 5 where only a small difference in the period of oscillations appear). A

more thorough investigation will be needed, in order to see the errors brought by

the assumption of normality, and those by the use of second-order Taylor devel-

opments for β and α. More precise approximations could be used, if needed, for

some special choices of β and α

From the study of the Jacobian of (23), one sees that, for most reasonable

parameter values (including the ones used in Fig. 5), the equilibrium (S̄, Ī , M̄ , V̄ )

is stable. It is possible, however, to choose parameter values that destabilize the

equilibrium, opening the possibility for cyclic behaviour. However, since these

values lie in the region where the assumptions used to derive the approximate

model fail, it is not clear whether it is possible to obtain periodic solutions for

the exact system (21).

On the other hand, convergence to the equilibrium level of virulence occurs

usually through damped oscillations (Fig.5). Such a behaviour is impossible in

one-dimensional adaptive dynamics, and is an interesting result of the polymor-

phic modelling approach.
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6 Discussion

In this chapter I have considered the evolution of virulence assuming the exis-

tence of a fundamental trade-off between transmissibility and virulence. Using

the adaptive dynamics framework (Geritz et al., 1998), the evolutionary dynam-

ics in the simple model of Anderson and May (1982) is well understood: con-

vergence to the strategy α that maximises R(α) (the ‘per capita’ reproductive

ratio). Andreasen and Pugliese (1995) considered a variant of that model in which

density-dependence acted on mortality instead of on fertility. Then, transient di-

morphisms are possible; under the assumptions of adaptive dynamics, however,

these contract towards the unique continuously stable strategy.

A complete analysis of the model with superinfection is still missing. Prelimi-

nary results suggest that, when the function k relating virulence to superinfection

rates is differentiable, a unique continuously stable strategy for virulence α∗ exists;

in this model too, dimorphisms are only transients. However, the evolutionary

dynamics may depend on the size of mutations, since α∗ is only locally uninvad-

able. When the function k is not differentiable, evolutionary dynamics can be

very complex.

This model for superinfection suffers, as most of the existing models, of a

serious problems: the infected individuals are assumed to be infected with a

single pathogen strain. If superinfection occurs, its instantaneously leads to a

complete replacement of the original strain with the superinfecting strain. While

this may be a viable approximation when strains differ considerably in their

replication rate, the approximation becomes questionable when the virulence of

competing strains is very similar. Yet such similar strains are considered when

studying evolutionary stability. When concomitant infections are allowed, models

become very complex and are difficult to handle (see, however, Nowak and May

(1995) and van Baalen and Sabelis (1995)). It would seem promising to merge

these epidemic models with models for intra-host competition among parasites.
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Parasite competition would then occur at two levels, and it seems likely that

stable coexistence of different parasite types may occur.

In Section 5, I analysed the model of Anderson and May (1982) assuming that

mutations are frequent. The main difference is, of course, that then the evolu-

tionary equilibrium is not a single state, but a frequency distribution of strains.

The centre of this distribution is generally very close to the continuously stable

strategy found through adaptive dynamics. There is, however, some differences

in how the evolutionary equilibrium is approached. It would be interesting to use

this approach in more complex cases, where there is not a single optimum for the

basic reproductive ratio.

As stated at the beginning, the evolution of virulence is very actively stud-

ied, both experimentally (Ebert and Mangin, 1997; Ebert, 1998; Mackinnon and

Read, 1999b; Koella and Agnew, 1999) and theoretically. Among the most im-

portant problems recently considered and not addressed here, I would mention

the evolution of virulence in structured hosts, whether genetically (Regoes et al.,

2000), or spatially (Haraguchi and Sasaki, 2000), in which multiple parasite types

may be maintained; and the dynamics of host resistance and tolerance (Boots and

Bowers, 1999; Roy and Kirchner, 2000). The latter problem, for which a full co-

evolutionary treatment is needed, may have also implications for wide-ranging

issues, such as the evolution of symbiosis, genomic conflicts and early evolution

(Frank, 1996). I hope the present treatment may be a basis on which much more

complex problems can be studied.
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