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In this paper, a simple semi-discrete (ticks’ feeding is assumed to occur only during1

the summers of each year) model for tick population dynamics is presented. Con-2

ditions for existence, uniqueness, and stability of a positive equilibrium are found;3

the system is then studied numerically using parameter estimates calibrated for the4

tick Ixodes ricinus in Trentino, Italy, and the sensitivity to parameters is examined.5

Then, this model is extended to consider a tick-transmitted infection of one6

species of hosts, while other hosts are incompetent to the infection. Assuming,7

for simplicity, that the infection is not affecting the total number either of hosts or8

ticks, a threshold condition for infection persistence is obtained. The dependence9

of the equilibrium infection prevalence on parameters is studied numerically; in10

particular, we considered how infection prevalence depends on host densities. This11

analysis reveals that a ‘dilution effect’ occurs both for competent and for incompe-12

tent hosts; this means that, besides a lower threshold for host densities for infection13

to persist, there exists also an upper threshold: if host densities were higher than the14

upper threshold, the infection would go to extinction. Numerically, it is found that,15

for realistic parameter values, the upper threshold is not much higher than observed16

densities.17

c© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights18

reserved.19

1. INTRODUCTION20

Tick-borne diseases [for instance, rickettsiosis, Lyme disease, Ehrlichiosis,21

relapsing fever, TBE (tick-borne encephalitis)] are serious health problem affect-22

ing humans as well as domestic animals in many parts of the world. These23

infections are generally transmitted through a bite of an infected tick, and it24

appears that most of these infections are widely present in some wildlife species;25

hence, an understanding of tick population dynamics and its interaction with hosts26

is essential to understand and control such diseases (Hudsonet al., 2002).27

∗Author to whom correspondence should be addressed.E-mail: pugliese@science.unitn.it
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Our work is tailored to Lyme disease, which is transmitted, in Europe and North1
America, by Ixodes ricinus. Ixodidae ticks, after hatching from eggs, go through2
three life stages: larva, nymph, and adult. They pass from one life stage to another3

by moulting, after a blood meal. In temperate climates, the life cycle is strongly4
influenced by the seasonal rhythm: simplifying a very complex pattern (Randolph 5

et al., 2002), one can say that larvae and nymphs who feed in the season in which6

they emerge generally develop into nymphs and adults respectively in the next7

season. If they do not feed in their first season (summer), most die off but some8

(especially nymphs) can survive through winter and feed in the following year,9
developing (into adults) in the same year in which they feed. Adult ticks feed10

also during winter; they mate, with the male dying shortly after mating and the11

female remaining longer on the host. Afterwards, the female drops off the host12

and deposits about 3000 eggs. The hatching of larvae takes several weeks (48–13513

days) and they start appearing from the summer onwards. 14

For most of the infections named above, transmission occurs during blood meals:15

a tick feeding on an infected host may become infected, and then carry the infection16

throughout its life, being able to transmit the infection to subsequent hosts. For17

some infections, especially TBE, infection may also be transmitted directly among18

ticks feeding close to each other (‘co-feeding’) (Joneset al., 1987); this route will 19

not be considered in the present paper. 20

There exist several papers [for instance,Caracoet al. (1998), O’Callaghanet al. 21

(1998), Normanet al. (1999), Rosà et al. (2003)] that model tick and infection 22

dynamics as a continuous process in time. However, as already described, tick23

population dynamics is strongly influenced, in temperate climates, by the seasonal24

pattern, with tick development from one stage to the next generally requiring one25

year. Randolph and Rogers(1997) described tick population dynamics under the26

influence of environmental conditions, whileSandberg and Awerbuch(1992) used 27

a matrix model with month-dependent transition rates; neither of them, however,28

considered infection transmission. 29

Here we present a simple model for tick dynamics and infection transmission that30

takes into account the seasonal cycle, albeit in an extreme way. Tick feeding and31

infection dynamics is described as a continuous process in each ‘summer’, while32

tick development occurs through ‘winters’. Therefore, we obtain a semi-discrete33

model in the variablesLn, Nn , andAn , the densities of larvae, nymphs, and adults34

at the beginning of seasonn. We find the threshold conditions for tick persistence,35

and for the stability of the endemic equilibrium. 36

This simple model is then extended to consider infections from ticks to host and37

vice versa, under the simplifying assumption that infection is not affecting the total38

number of either ticks or hosts. Here too a threshold condition for infection-free39

equilibrium is obtained. 40

The system is then studied numerically, using parameter estimates based on data41

obtained from the Centre for Alpine Ecology, but considering also, through bifurca-42

tion diagrams, how uncertainties in parameters reflect in the qualitative behaviour43
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of the system. In particular, we study the effects of season length, host density,1

probability of immediate development, and winter survival probability of larvae on2

tick and infection dynamics.3

2. THE MATHEMATICAL MODEL FOR TICK DYNAMICS4

As stated above, we consider a very simple model for tick dynamics with two5

distinct seasons: ‘summer’ and ‘winter’. Feeding occurs as a continuous process6

during summer, while only moulting generally occurs in winter. To be precise,7

we assume that larvae and nymphs that feed during one ‘summer’ go through8

the moulting stage but arrest their development and emerge (as nymphs or adults,9

respectively) in the following ‘summer’. On the other hand, we assume that after10

the adult females feed and produce eggs, a proportion of the eggs hatch imme-11

diately, so that larvae emerge in the same ‘summer’, while the rest arrest their12

development, and larvae emerge in the following ‘summer’. Finally, we assume13

that larvae, nymphs, and adults die at the end of the ‘summer’ in which they have14

emerged, if they have not succeeded in feeding. Of course, these assumptions are15

rather crude with respect of the complex interactions between climatic factors, indi-16

vidual fat reserves, and feeding time (Randolphet al., 2002); we believe, however,17

that they capture some essential features of ticks’ seasonal rhythm.18

For the sake of simplicity, host population is assumed to be constant [seeRosà19

et al. (2003) for other assumptions].20

These assumptions translate into the following model: in summern, the vari-21

ablesLn(t), Nn(t), andAn(t) (densities of larvae, nymphs, and adults at timet of22

summern) satisfy the following system of differential equations:23




L̇n(t) = pcgA An(t)− (dL + gL)Ln(t),
Ṅn(t) = −(dN + gN )Nn(t),
Ȧn(t) = −(dA + gA)An(t),

(1)
24

wheredz (z = L , N, A) are the death rates (during the season) of the various25

stages, andgz their feeding rates. Feeding rates will depend on encounter ratesβz26

and host densities; since we assumed host densities to be constant, feeding rates27

will also be constant: however, when we consider how tick dynamics is affected28

by host densities, we will use the explicit dependence ofgz on host densities.29

The constantp is the probability of immediate development of tick larvae, andc30

is the number of larvae produced per feeding adult (considering also their sex ratio);31

the latter is assumed to be constant [in contrast to the case forRosà et al. (2003)],32

since in the literature density dependence is documented in moulting probabilities33

(Randolph and Rogers, 1997) but not in this quantity.34

To this equation, valid in(0, T ) (T is the length of a summer), we associate initial35

conditions, depending on the previous year’s variables; to be precise:36
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1


Ln(0) = w

∫ T
0 (1 − p)cgA An−1(s)ds

Nn(0) = mL(Ln−1)
∫ T

0 gL Ln−1(s)ds
An(0) = mN (Nn−1)

∫ T
0 gN Nn−1(s)ds.

(2)
2

Herew is the probability of survival through winter for larvae that have delayed3

development;mz(·) are the moulting rates, assumed to be decreasing functions of4

the average density (over the season) of that stage [seeRandolph and Rogers(1997) 5

for empirical evidence for this assumption]. The average densities are defined as6

Ln−1 = 1

T

∫ T

0
Ln−1(s)ds (3)

7

and analogously forNn−1. 8

Solving (1), we find 9




Nn(t) = Nn(0)e−(dN +gN )t

An(t) = An(0)e−(dA+gA)t

Ln(t) = pcgA

∫ t
0 e−(dL+gL )(t−s)An(s)ds

= Ln(0)e
−(dL+gL )t + pcgA An(0)

e−(dA+gA)t − e−(dL+gL )t

dL + gL − (dA + gA)

(4)

10

under the generic assumptiondL + gL �= dA + gA. 11

From (4), we obtain 12

Nn−1 = Nn−1(0)

T
τN and Ln−1 = 1

T
(pc fAτLi An−1(0)+ τLd Ln−1(0)), (5) 13

where 14

τN =
∫ T

0
e−(dN +gN )sds = 1 − e−(dN +gN )T

(dN + gN )
15

represents the average time spent questing by a nymph, 16

τLd =
∫ T

0
e−(dL+gL )sds = 1 − e−(dL+gL )T

(dL + gL)
17

represents the average time spent questing by a larva that has delayed development,18

f A = gA

∫ T

0
e−(dA+gA)sds = gA

dA + gA
(1 − e−(dA+gA)T )

19

represents the probability that an adult feeds, and 20

τLi = gA

f A

∫ T

0
e−(dA+gA)s

∫ T

s
e−(dL+gL )(t−s)dt ds

21
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represents the average time spent questing by a larva with immediate development,1

remembering that this will start at times of a season.2

The constantsτN and τLd arise naturally from (4), and happen to have a nice3

biological interpretation. On the other hand, the constantsf A andτLi have been4

introduced in order to give a consistent biological interpretation of (5). To see that5

(5) is indeed correct, one can compute6

f AτLi = gA

(dA + gA)(dL + gL)
− gA

dL + gL − (dA + gA)
7

×
(

e−(dA+gA)T

dA + gA
− e−(dL+gL )T

dL + gL

)
8

= gA

∫ T

0

e−(dA+gA)t − e−(dL+gL )t

dL + gL − (dA + gA)
dt.

9

Note that, for reasonable values of death and feeding rates, and of season lengths,10

the exponential terms in these expressions are very close to zero, and one has the11

approximations12

τN ≈ 1

dN + gN
τLd ≈ τLi ≈ 1

dL + gL
f A ≈ gA

dA + gA
. (6)

13

With this notation, we can then obtain a discrete system for the densities at the14

beginning of each season:Ln ≡ Ln(0), Nn ≡ Nn(0), and An ≡ An(0). In fact,15

from (2), using (4) and (5), we obtain16




Ln = c(1 − p)w f A An−1,

Nn = gL( f AcpτLi An−1 + τLd Ln−1)mL

(
( f AcpτLi An−1 + τLd Ln−1)

T

)
,

An = gN τN Nn−1mN

(
Nn−1τN

T

)
.

(7)17

All the parameters used in this model are presented, together with their biological18

interpretation and a reference value, inTable 1.19

Let us now look for a stationary (overn) solution of (7): setLn ≡ L∗, Nn ≡ N∗
20

and An ≡ A∗ in (7). From the first equation, we obtain21

L∗ = c(1 − p)w f A A∗. (8)22

Then, using (8) in the second and third equation, we obtain23

N∗ = cgL f A A∗(pτLi + (1 − p)wτLd )mL

(
c f A A∗

T
(pτLi + (1 − p)wτLd )

)
(9)

24



UNCO
RRECTE

D P
RO

O
F

YBULM: 452

ARTICLE  IN  PRESS

6 M. Ghosh and A. Pugliese

Table 1. Notation used to denote the various parameters included in the model, together
with the reference values used. In all parameters time is measured in days, and host densi-
ties are per hectare.

Symbol Description Value

H1, H2 Densities of two types of hosts 30, 0.1
βz

1 Rates of encounters between questing ticks in stagez (z =
L , N, A) and hostH1

0.028, 0.0009, 0

βz
2 Rates of encounters between questing ticks in stagez (z =

L , N, A) and hostH2

0.05, 0.03, 0.13

σ z
i Detachment rate of ticks in stagez (z = L , N, A) feeding on

hostsHi (i = 1,2)
0.5

cz
i Computed quantity βz

i /β
z
i

gz Feeding rates in stagez (z = L , N, A) given by the relation
(18)

0.31, 0.028, 0.013

dz Death rates of questing ticks in stagez (z = L , N, A) 0.05, 0.03, 0.03
mz(x) Moulting probability depending on average valuesx of ticks in

stagez
0.15 e−0.008x

p Probability of immediate development of tick larvae 0.8
w Winter survival probability of larvae that have delayed develop-

ment
0.1

T Length of summer 182
c Average number of eggs per fed adult 1300

and 1

A∗ = gN N∗τN mN

(
N∗

T
τN

)
. (10)

2

Substituting (10) in (9), we see thatN∗ can either be equal to 0, or it must be a 3

solution of the equationG(N) = 1 where 4

G(N) = gLc1mN (c2N)mL

(c1

T
NmN (c2N)

)
(11) 5

with 6

c1 = c f AgN τN (pτLi + (1 − p)wτLd ) and c2 = τN

T
. 7

Once we have a solutionN∗ of G(N) = 1, (8) and (10) yield A∗ and henceL∗. 8

Thus we have a nontrivial equilibrium, sayE∗ = (L∗, N∗, A∗). 9

If we assume 10

lim
x→∞ min{mL(x),mN (x)} = 0 (12) 11

we then see that a sufficient condition for having a nontrivial equilibrium isG(0) > 12

1, i.e., 13

gLc1mN (0)mL(0) = cgL f AgN τN (pτLi + (1 − p)wτLd )mN (0)mL(0) > 1. (13) 14

Condition (13) can be easily interpreted. In fact,gN τN represents the probability 1516
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that a nymph feeds; analogously,gL(pτLi + (1− p)wτLd ) represents the probabil-1

ity that a larva feeds, averaging over the probabilityp that it develops immediately,2

and that, discounted by overwinter survival probabilityw, that it delays develop-3

ment. Hence, the left hand side of (13) computes the expected number of larvae4

produced by a larva, when density-dependent effects do not operate: the probability5

of developing into a nymph(gL(pτLi + (1− p)wτLd )mL(0)) times the probability6

that the nymph develops into an adult(gN τN mN (0)) times the expected number of7

larvae produced( f Ac).8

Now we are interested in finding conditions that guarantee uniqueness of the9

roots ofG(N) = 1, and hence of the positive equilibrium. If eithermL or mN is10

constant, while the other is decreasing, it is immediate from the expression (11)11

thatG(N) is a decreasing function; hence, there is at most one root ofG(N) = 1.12

Things are different if bothmL andmN are decreasing functions, because then13

G(N) could be increasing. We will consider in detail two possible choice for these14

functions:15

mz(x) = sz

1 + µx
or mz(x) = sze

−µx (14)
16

for z = L , N ; heresz = mz(0) represents the probability of moulting in a tick-free17

habitat, whileµ measures the strength of density dependence in moulting proba-18

bility.19

First, we computeG ′(N) without specifying the functionsmz(·); then we will20

insert (14). We have21

G ′(N) = gLc2
1

T
m ′

L

(c1

T
NmN (c2N)

)
[mN (c2N)]2 + gLc1c2m ′

N (c2N)22

×
[
mL

(c1

T
NmN (c2N)

)
+ c1

T
NmN (c2N)m ′

L

(c1

T
NmN (c2N)

)]
.23

(15)24

The first term in (15) is clearly negative. As for the second term, we see that25

mL(x) = sL
1+µx satisfies26

mL(x)+ xm ′
L(x) > 0 ∀ x ≥ 0. (16)27

Hence the term in square brackets in (15) is positive, and the whole expression is28

negative.29

On the other hand, ifmL(x) andmN (x) are exponential functions, the situation30

is not this easy, and we need to compute (11) explicitly. Let thenmL(x) = sL e−µx
31

andmN (x) = sN e−µx (for the sake of simplicity, we chose the same constantµ in32

both functions); settingµc2N = x , equation (11) with G(N) = 1 reduces to33

f (x) = 0, (17)34

where f (x) = x(c3e−x + 1)− log(c4), with35
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c3 = c1sN

T c2
= c f AgN (pτLi + (1 − p)wτLd )sN 2

c4 = gLc1sLsN = gLc1mL(0)mN (0). 3

From equation (17) it is immediate that to have a positive root we need log(c4) > 0; 4

this is equivalent to condition (13), which is then, in this case, a necessary and5

sufficient condition for the existence of positive equilibria. 6

Still we may have more than one positive root of equation (17), and we look for 7

conditions that guarantee uniqueness. 8

We note that f ′(x) = 1 + c3e−x(1 − x), and f ′′(x) = c3e−x(x − 2). This 9

implies that the minimum off ′(x) is atx = 2; hencef ′(x) ≥ f ′(2) = 1 − c3e−2. 10

Therefore f ′(2) ≥ 0 (i.e., c3 ≤ e2) ⇒ f ′(x) ≥ 0 ∀ x . 11

Thus we see that a sufficient condition for the uniqueness of the positive root12

of (17) is c3 ≤ e2. This condition is largely satisfied for the parameter values13

estimated from field data (see below). 14

The Jacobian matrix corresponding to the system (7) at the equilibrium point 15

(L∗, N∗, A∗) can be written as follows: 16

M =

 0 0 c(1 − p)w f A

m21 0 m23

0 m32 0


 ,

17

where 18

m21 = gLτLd mL

(
f AcpτLi A∗ + τLd L∗

T

)
19

+ gL( f AcpτLi A∗ + τLd L∗)
τLd

T
m ′

L

(
f AcpτLi A∗ + τLd L∗

T

)
= gLτLd D

20

m23 = gL f AcpτLi

[
mL

(
f AcpτLi A∗ + τLd L∗

T

)
21

+ f AcpτLi A∗ + τLd L∗

T
m ′

L

(
f AcpτLi A∗ + τLd L∗

T

)]
= gL f AcpτLi D

22

m32 = gN τN [mN (c2N∗)+ c2N∗m ′
N (c2N∗)] 23

andD = [
mL

( c1
T N∗mN (c2N∗)

) + c1
T N∗mN (c2N∗)m ′

L

( c1
T N∗mN (c2N∗)

)]
24

Herem ′
z(u) (wherez = L or N ) denotes the derivative of the functionmz(·) with 25

respect to its argument, computed in terms of the valueu. 26

We immediately note that, ifmz(x) = sz
1+µz x , we have thatm21,m23, andm32 are 27

all positive since then condition (16) holds. 28

Now, the characteristic polynomial ofM is given by 29

P(λ) = λ3 − m23m32λ− c(1 − p)w f A m21m32. 30
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The necessary and sufficient conditions (Jury conditions) for all roots ofP(λ) = 01

to satisfy|λ| < 1 are2

(i) P(1) > 0;3

(ii) (−1)3P(−1) > 0;4

(iii) |a3| < 1 and|b3| > |b1|, where5

6

a3 = c(1 − p)w fAm21m32 b3 = 1 − a2
3, b1 = −m23m32.7

It is easy to see that8

P(1) = 1 − G(N∗)− N∗G ′(N∗) = −N∗G ′(N∗).9

Hence, if G ′(N∗) < 0 [which will always be true whenmL(x) = sL
1+µL x and,10

more generally, when there exists a unique positive equilibrium], condition (i) will11

always hold.12

Moreover, if the coefficientsm21m32 and m23m32 are both positive, condition13

(i) implies (ii) and (iii). Hence, from the previous considerations, we see that, if14

mz(x) = sz
1+µz x , the unique positive equilibrium is always stable when it exists, i.e.,15

when (13) is satisfied.16

On the other hand, ifmz(x) = sze−µz x , conditions (ii) and (iii) do not follow from17

(i), so that it is possible to have a (unique) positive equilibrium which is unstable.18

This is later shown numerically.19

Note finally that condition (i) for the stability of the tick-free equilibriumE0 ≡20

(0,0,0) is gLc1mN (0)mL(0) < 1, i.e., the opposite of (13); since in this case21

m21,m23, andm32 are all positive, conditions (ii) and (iii) will then be automatically22

satisfied.23

2.1. Simulations. The simulations were performed using parameter values con-24

sidered to be reasonable for describing Ixodes ricinus tick populations in Trentino25

[seeCEA Report(2000) for background information]. As inRosà et al. (2003),26

the feeding ratesgz are assumed to depend on host densities according to a saturat-27

ing function, because of the extended feeding period. To be precise, we used the28

relation29

gZ (H1, H2) = βz
1 H1 + βz

2 H2

1 + cz
1H1 + cz

2H2
(18)

30

where H1 and H2 are the densities of two types of hosts (typicallyH1 and H231

represent rodents, especiallyApodemus spp. andChlethryonomis galreolus, while32

H2 represent ungulates, especially roe deer),βz
i are the rates of contacts between33

hostsi and questing ticks in stagez (z = L , N, A), σ z
i are the detachment rates of34

ticks in stagez feeding on hostsHi , andcz
i = βz

i
σ z

i
. This saturating function is found35

using a quasi-equilibrium relation in a model that distinguishes between questing36

and feeding ticks (Mwambi et al., 2000).37
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All parameter values used are shown inTable 1; we briefly sketch here the moti- 1

vation for the choices. From several experiments and observations, described in2

Rosà et al. (2004), estimates for the encounter ratesβz
i were found, and these are 3

reported inTable 1. The following estimates (measuring time in days, and host4
densities per hectare) were obtained: 5

βL
1 = 0.028, βN

1 = 0.0009, β A
1 = 0, βL

2 = 0.05, βN
2 = 0.03, β A

2 = 0.13. 6

The duration of a meal is in the range of 2–3 days (Sonenshine, 1991), so thatσ z
i ≈ 7

0.5 d−1. Densities of rodents in the province of Trento range, according to year and8
location, between 5 and 30 per hectare, while densities of roe deer are generally9

around 0.1 per hectare. Using the previous estimates withH1 = 30, H2 = 0.1, we 10

get the following values forgL, gN , andgA that will be used as reference values: 11

gL = 0.31, gN = 0.028, gA = 0.013 (d)−1. 12

As for demographic parameters, we use the following values based on some liter-13

ature data:c = 1300 (average number of eggs per fed adult), taking into account14

a 1 : 1 sex ratio;dL = 0.05, dN = dA = 0.03 (death rates of questing ticks). 15

As for the moulting probability of fed larvae and nymphs, we choose exponential16

functions, using 0.15 as a normal moulting probability (Humair et al., 1999); the 17

value ofµ is chosen so as to have a reasonable density of nymph population per18

hectare(N∗ ≈ 400). Finally, the values ofp = 0.8 andw = 0.1 have been chosen 19

somewhat arbitrarily. 20

For the reference values, system (7) has a stable equilibrium, to which all numer- 21

ical solutions appear to converge (see an example inFig. 1) to the values 22

L∗ = 147.124, N∗ = 376.846, A∗ = 20.6533. 23

We have studied rather extensively how the equilibrium values depend on the24

parameter values. InFig. 2 we show the dependence onp, the probability of 25

immediate development. It can be seen thatp must be larger than 0.22 to have a 26

positive equilibrium, and that the equilibrium densities of nymphs and adult ticks27

always increase withp [this can be understood from (13), since, for these parame- 28

ter values,τLi > wτLd ]. 29

Season length(T ) also, as expected, has a positive effect on the equilibrium level30

of ticks, as shown inFig. 3. It appears that the dependence is almost linear. 31

A more complex effect can be seen in the variation of the equilibrium when the32

feeding rates are changed. InFig. 4, we show the dependence ofN∗ on gN . First 33

of all, it can be seen that, surprisingly, the relation is not monotone. Initially,N∗
34

increases withgN , but, at values not much higher than the estimated one, it starts35

decreasing. Second, at a value ofgN ≈ 0.43, there is a Neimarck–Sacker bifurca- 36

tion, meaning that forgN greater than that, the equilibrium will be unstable, and37

there will probably be periodic or quasi-periodic solutions. Remember that, if the3839
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Figure 1. Variation of larvae, nymphs, and adults with time. The parameter values are as
in Table 1.
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Figure 2. Variation of the equilibrium level of larvae, nymphs, and adults withp. All other
parameter values are as inTable 1.

functional formmz(x) = sz
1+µx had been used, instability of the equilibrium could1

not occur.2

In Fig. 5 we show the Neimarck–Sacker bifurcation points in the two-dimen-3

sional(p − gN ) plane. It can be seen that high values of either parameter tend to4
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Figure 3. Variation of the equilibrium level of larvae, nymphs, and adults withT . All other
parameter values are as inTable 1.
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Figure 4. The equilibrium level of the nymphs for varyinggN . All other parameter values
are as inTable 1. NS is the value at which Neimarck–Sacker bifurcation occurs.

destabilize the equilibrium; a similar pattern is shown inFig. 6 for the (gA − gN ) 1

plane. 2

In Fig. 7, we show a numerical simulation of the system for parameter values3
beyond the Neimarck–Sacker bifurcation point. It can be seen that the solution4

approaches a four-year cycle. 5

The feeding rates depend on host densities through the relations (18). However, 6

changing host densities will affect all feeding rates simultaneously, and so the7
parametersf A, τN , τLi , τLd present inG(N). In order to understand this cumu- 8

lative effect, we computed the equilibrium values for different sets of parameters9
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Figure 5. The stability region in the(p − gN ) plane. All other parameter values are as in
Table 1.
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Figure 6. The stability region in the(gA − gN ) plane. All other parameter values are as in
Table 1.

obtained by changingH1 and H2. Fig. 8(a) and8(b) shows the effect of host1

densities on the equilibrium level of nymphs; in the upper partH2 is kept fixed at2

0.1, whileH1 varies between 5 and 50 (which encompasses densities usually found3

in the region); in the lower part,H1 is fixed at 30, whileH2 varies between 0.084

and 0.12.5

3. THE MATHEMATICAL MODEL FOR TICKS WITH INFECTION6

In this section we integrate the previous model for tick population dynamics with7

the dynamics of a tick-borne infection.8
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Figure 7. A numerical simulation of system (1) beyond the bifurcation point. The param-
eter values used aregN = 0.2, g A = 0.05; all other parameter values are as inTable 1.
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We assume that infection is transmitted from infected ticks to susceptible hosts,1

or vice versa from infected hosts to susceptible ticks, while a tick is feeding2
on a host. A larva feeding on an infected host will become, after moulting, an3
infected nymph; analogously, a nymph feeding on an infected host will become4
an infected adult. In both cases, infection is assumed to last forever. On the5

other hand, we will assume that a host, after a period of infection, will become6
immune and no longer capable of transmitting the infection, although the evidence7

is dubious. 8
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For the sake of simplicity, we disregard transmission between co-feeding ticks,1

although this may be relevant in certain infections (Rosà et al., 2003). We also2

assume that the infection does not affect either tick or host demography; hence,3

we can assume that host population is constant (otherwise, it might fluctuate for4

reasons other than interactions with ticks), and also that total tick population is5

described by the model presented in the previous section.6

Therefore, the variables of the model will be just the densities of ticks and hosts7

in the various infection stages: to be precise, we will consider susceptibles(Ns)8

and infective(Ni ) nymphs [N = Ns + Ni will satisfy equation (7)]; similarly, we9

consider susceptibles(As) and infective(Ai ) adults(A = As + Ai ). Only hosts10

of species 1 are assumed to become infected. These are divided into susceptibles11

(H s), infectives(H i), and immune(Hr) classes whereH1 = H s + H i + Hr is12

taken as a constant.13

We will append a subscriptn to denote the values of the variables in the yearn.14

As in the previous section, we assume that tick feeding occurs only during sum-15

mers, of lengthT . The equations for the tick stages are exactly like (1), except that16

we distinguish between susceptible and infected ticks. Using the same assumptions17

as inRosà et al. (2003), the following differential equations valid fort ∈ (0, T )18

are obtained (T is the length of the summer):19

L̇n = pcgA(A
i
n + As

n)− (dL + gL)Ln,

Ṅ s
n = −(dN + gN )N

s
n ,

Ṅ i
n = −(dN + gN )N

i
n,

Ȧs
n = −(dA + gA)A

s
n,

Ȧi
n = −(dA + gA)A

i
n .

(19)

20

Hosts can become infected (with probabilityqz) if an infective tick feeds on them.21

As in the previous section [see alsoRosà et al. (2003)] we assume that feeding22

ratesgz have the form (18) which we rewrite as23

gz(H1, H2)= (βz
1 H1 + βz

2 H2)ψ
z(H1, H2) with24

ψ z(H1, H2)= 1

1 + cz
1H1 + cz

2H2
.

25

Hence, the rate at which susceptible hosts become infected is26

qNβN
1 ψ

N (H1, H2)N
i
n + q Aβ A

1 ψ
A(H1, H2)A

i
n27

giving rise to the following equations:28
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Ḣ s
n = a1(H1)H1 − b1H s

n − qNβN
1 H s

nψ
N (H1, H2)N

i
n

− q Aβ A
1 H s

nψ
A(H1, H2)A

i
n,

Ḣ i
n = qNβN

1 H s
nψ

N (H1, H2)N
i
n + q Aβ A

1 H s
nψ

A(H1, H2)A
i
n − (b1 + γ )H i

n,

Ḣ r
n = γ H i

n − b1Hr
n .

(20)

2

During winter, hosts are assumed to follow the same equations, except for the3

infections. Hence in wintern for t ∈ (T,365), we have the following equations: 4

Ḣ s
n = a1(H1)H1 − b1H s

n ,

Ḣ i
n = −(b1 + γ )H i

n,

Ḣ r
n = γ H i

n − b1Hr
n .

(21)

5

Finally, (19) and (20) need to be complemented with initial conditions. Those for 6

hosts come simply from (21) with the appropriate change in subscripts. Those for7

ticks are the same as (2), except that we keep track of the fact that larvae (nymphs)8
that have fed on infected hosts will emerge as infected nymphs (adults): 9

Ln+1(0) = w

∫ T

0
(1 − p)cgA(A

i
n(s)+ As

n(s))ds,

Ns
n+1(0) = mL(Ln)

[∫ T

0
gL Ln(s)ds −

∫ T

0
βL

1 H i
n(s)ψ

L Ln(s)ds

]
,

Ni
n+1(0) = mL(Ln)

∫ T

0
βL

1 H i(s)ψ L Ln(s)ds,

As
n+1(0) = mN (Nn)

[∫ T

0
gN Ns

n (s)ds −
∫ T

0
βN

1 H i
n(s)ψ

N Ns
n (s)ds

]
,

Ai
n+1(0) = mN (Nn)

∫ T

0
βN

1 H i
n(s)ψ

N Ns
n (s)ds,

H s
n+1(0) = H s

n (365),

H i
n+1(0) = H i

n(365),

Hr
n+1(0) = Hr

n (365).

(22)

10

All parameters of the model (19)–(22) are summarized inTable 2.
11

As already stated, we will consider this model only at stationary population sizes.12

Namely, we will assume that 13

H s
n + H i

n + Hr
n ≡ H ∗

1 14
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Table 2. Parameters included in the model with infection beyond those already listed in
Table 1.

Symbol Description Value

b1 Birth or death rate of hostH1 1/365
γ Recovery rate of hostH1 0.01
qz Probability of becoming infected for a host 1 bitten by an infec-

tious tick in stagez (z = N, A)
0.5

ψ z Computed quantity 1
1+cz

1H1+cz
2H2

βN Computed quantity q NβN
1 ψ

N

wherea1(H ∗
1 ) = b1. As for ticks, we will assume1




Ns
n (t)+ Ni

n(t) = N∗e−(dN +gN )t

As
n(t)+ Ai

n(t) = A∗e−(dA+gA)t

Ln(t) = L∗e−(dL+gL )t + pcgA A∗ e−(dA+gA)t − e−(dL−gL )t

dL + gL − (dA + gA)
= A∗l(t)

(23)

2

with3

l(t) = c

(
pgA

e−(dA+gA)t − e−(dL+gL )t

dL + gL − (dA + gA)
+ (1 − p)w f Ae−(dL+gL )t

)
. (24)

4

The only unknowns of the model are thenH s(t), H i(t), Ni (t), and Ai (t). If we5

assume thatβ A
1 = 0 (i.e., adult ticks do not feed on hosts 1, as is generally true6

if they represent rodents), it turns out that all the other variables are independent7

of the value ofAi (t), since we assumed that there is no transovarial transmission.8

The only variables of interest are thenH s(t), H i(t), andNi (t).9

We start by solving (19) and (20) on (0, T ). To simplify the notation, we drop10

the subscriptsn and we letb = b1 = a1(H ∗
1 ) be the birth or the death rate of the11

host population, andβN = qNβN
1 ψ

N . We easily find12

Ni (t) = Ni (0)e−(dN +gN )t .13

We then have a linear equation forH s:14

Ḣ s + [b + βN Ni (0)e−(dN +gN )t ]H s = bH ∗
115

which gives16

H s(t) = H s(0)F1(t, Ni (0))+ H ∗
1 F2(t, Ni (0)),17

where18

F1(t, Ni ) = e−bt e− βN Ni

dN +gN
[1−e−(dN +gN )t ]

19
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and 1

F2(t, Ni ) = b
∫ t

0
e−b(t−s)− βN Ni

dN +gN
[e−(dN +gN )

s −e−(dN +gN )t ]ds.
2

Similarly we can write, 3

H i(t) = H i(0)e−(b+γ )t + Ni (0)[H s(0)G1(t, Ni (0)+ H1G2(t, Ni (0))], 4

where 5

G1(t, Ni )= βN
∫ t

0
F1(s, Ni )e−(dN +gN )se−(b+γ )(t−s)ds,

6

G2(t, Ni )= βN
∫ t

0
F2(s, Ni )e−(dN +gN )se−(b+γ )(t−s)ds.

7

Now, using (21) and (22), we obtain a system of difference equations in the vari- 8

ablesNi [n] ≡ Ni
n(0), H i [n] ≡ H i

n(0), andH s[n] ≡ H s
n (0): 9




Ni [n + 1] = k L A∗(ki H i[n] + H s[n]Ni [n]R1(Ni [n])
+H ∗

1 Ni [n]R2(Ni [n]))
H i [n + 1] = pi

a H i [n] + pi
wNi [n](H s[n]G1(Ni [n])+ H ∗

1 G2(Ni [n]))
H s[n + 1] = ps

wH s[n]F1(Ni [n])+ H ∗
1 (1 − ps

w(1 − F2(Ni [n])))
(25)

10

with 11

Fj (N
i ) ≡ Fj (T, Ni ) and G j (N

i ) ≡ G j (T, Ni ) for j = 1,2, 12

and 13

k L = mL(L̄)ψ LβL
1 ki =

∫ T

0
e−(b+γ )t l(t)dt,

14

pi
a = e−(b+γ )365 pi

w = e−(b+γ )(365−T ) ps
w = e−b(365−T )

15

R1(N
i ) =

∫ T

0
G1(t, Ni )l(t)dt, R2(N

i ) =
∫ T

0
G2(t, Ni )l(t)dt

16

using, in all cases, the expression (24). 17

The structure of the system (25) is rather simple, although the functions involved, 18

F2,G1,G2, R1, andR2, cannot be written in an explicit analytic form, and even the19

analytic computations that are possible (such as that forki ) do not help in making 20

the results more transparent. 21

It must be noted however that, for reasonable values of the recovery rateγ , we 22

have thatPi
a , pi

w ≈ 0; hence, the values ofH i[n] are always very close to 0, and 23

system (25) is approximately two-dimensional. 24
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3.1. Equilibria and stability. System (25) has a disease-free equilibrium atE0 =1

(0,0, H ∗
1 ). The Jacobian at equilibrium is2

J0 =

 k L A∗ H ∗

1 (R1(0)+ R2(0)) k L A∗ki 0
pi
wH ∗

1 (G1(0)+ G2(0)) pi
a 0

ps
wH ∗

1 (F
′
1(0)+ F ′

2(0)) 0 ps
wF1(0)


 .

3

The eigenvalues ofJ0 areλ3 = ps
wF1(0) = e−365b < 1, and the two eigenvalues of4

A =
(

k L A∗ H ∗
1 (R1(0)+ R2(0)) k L A∗ki

pi
wH ∗

1 (G1(0)+ G2(0)) pi
a

)
.

5

Since all components ofA are positive, the dominant eigenvalue ofA is real and6

positive and through some computations that exploit the fact thatpi
a < 1, one7

easily see that the dominant eigenvalue is larger than 1; henceE0 is unstable if and8

only if9

R0,inf = k L A∗ H ∗
1

(
R1(0)+ R2(0)+ ki pi

w(G1(0)+ G2(0))

1 − pi
a

)
> 1. (26)

10

From11

G1(0)+ G2(0) = βN e−(b+γ )T − e−(dN +gN )T

dN + gN − (b + γ )12

and13

R1(0)+ R2(0) = βN

dN + gN − (b + γ )

∫ T

0
(e−(b+γ )t − e−(dN +gN )t)l(t)dt

14

we obtain, recalling also the definition ofβN andk L ,15

R0,inf = A∗ H ∗
1

mL(L̄)βL
1ψ

LqNβN
1 ψ

N

dN + gN − (b + γ )

(∫ T

0
(e−(b+γ )t − e−(dN +gN )t)l(t)dt

16

+ ki pi
w(e

−(b+γ )T − e−(dN +gN )T )

1 − pi
a

)
. (27)

17

Expression (27) can be interpreted as the average number of larvae that get infected18

starting with a newly infected larva. We can think that a larva infected during a19

‘summer’ will have, in order to transmit the infection, to successfully moult and,20

then, as a nymph, bite a susceptible host of type 1 and infect it. That host can then21

transmit the infection to other larvae within the same season, or in the next year;22

the first term in (27) counts infections occurring within the same season, while23

the second term (which will be very small sincepi
w ≈ 0) counts infections in the24
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following years. If that host infects other nymphs, these are dead ends for the1

infection, since, at least in this model, adults bite only incompetent hosts. 2

In order to interpret (27), we note that, for a nymph emerging at the beginning of 3

a season, the probability density of biting a host of type 1 at times is 4

βN
1 H ∗

1ψ
N e−(dN +gN )s . 5

To obtain the probability density, for a newly infected larva, of infecting a host of6
type 1, this quantity has to be multiplied by the probability of successfully moulting7

(mL(L̄)) and that of infecting the host(qN ). The total number of larvae infected in 8

the same season by that newly infected host will be computed by integrating fort 9

from times to the end of the seasonT the rate at which it is bitten by larvae: this 10

is 11

e−(b+γ )(t−s)βL
1 A∗l(t)ψ L, 12

sincee−(b+γ )(t−s) is the probability that the host is still alive and infectious at time13

t , and A∗l(t) is the density of larvae at timet of a season. Overall, the average 14

number of larvae that, starting with a newly infected larva in yearn, get infected in 15

yearn + 1 is 16

mL(L̄)
∫ T

0
βN

1 H ∗
1ψ

N e−(dN +gN )sqN

∫ T

s
e−(b+γ )(t−s)βL

1 A∗l(t)ψ Ldt ds. (28)
17

By exchanging the order of integration, (28) can be written as 18

mL(L̄)βN
1 H ∗

1ψ
N qNβL

1 A∗ψ L
∫ t

0
e−(b+γ )t l(t)

∫ t

0
e[b+γ−(dN +gN )]sds dt

19

which, on computing the inner integral, is clearly equal to the first term in (27). 20

The second term can be interpreted analogously. 21

The rather complex expression (27) can be approximated, by recalling thatpi
w ≈ 22

0 and that the same is true for all exponential terms likee−(b+γ )T , e−(dN +gN )T · · · 23

Then, one obtains 24

R0,inf ≈ cA∗βL
1 H ∗

1ψ
LmL(L̄)qNβN

1 ψ
N

(dN + gN − (b + γ ))(dL + gL + b + γ )(dN + gN + dL + gL)
25

×
[

pgA

(
dN + gN + dL + gL

b + γ + dA + gA
− b + γ + dL + gL

dN + gN + dA + gA

)
26

+ w(1 − p) fA(dN + gN − (b + γ ))

]
. (29)

27

Expression (29) is still rather complex, so it is difficult to understand well the effect28

of parameters. One can see that tick density,A∗, density of hosts 1, H ∗
1 , probability 29
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Figure 9. Variation in time of infected nymphs. Parameter values are as inTables 1and2.

of host infection,qN , all have a direct positive effect on infection persistence. On1

the other hand, there are indirect negative effects, since an increase in tick den-2

sity decreases the termmL(L̄); considering then host densities: if they increase,3

generally tick densities will also increase (as seen in the previous section) with the4

consequent direct and indirect effects; moreover, increasing host density will also5

decrease the termψN , and affect all feeding ratesgz with results difficult to predict.6

3.2. Effect of host densities. Using the reference values shown inTables 1and7

2 for the parameters, we found thatR0,inf > 1 and that the solutions converge to an8

endemic equilibrium with infection present (inFig. 9we show a simulation).9

Instead of performing a sensitivity analysis on all parameters, we concentrate on10

the effect of host densities on the system, since this has also been the focus of other11

theoretical works on tick-borne infections (Normanet al., 1999; Rosàet al., 2003).12

As discussed before, it is not easy to study analytically the effect of host densi-13

ties on the infection threshold, let alone on equilibrium densities. Therefore, we14

resorted to a numerical study, whose results are shown inFig. 10. It turns out15

that host densities have a non-monotone effect: there exists a first threshold below16

which infection cannot be sustained, but also a second threshold above which infec-17

tion is eradicated. In between, solutions converge to an endemic equilibrium, at18

least for the parameter values considered.19

Moreover, it can be seen that this negative effect of host densities on infection20

persistence occurs at densities not much larger than those usually estimated in21

Trentino: densities of infected nymphs and hosts start decreasing just as the den-22

sity of hosts 2 (roe deer) passes beyond the average density (0.1) and go to zero23

at a density of 0.4 per hectare; as for hosts 1, infection density starts decreasing24

as density goes beyond 50–60 per hectare (against an average density in the range25

10–30) and reaches 0 at a density around 110 per hectare.26
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Figure 10. Variation of infected nymphs and hosts withH1 andH2. Other parameter values
are as inTables 1and2.

4. DISCUSSION 1

The aim of this paper was to study how the discrete nature of the tick life cycle,2
especially in temperate climates, could influence the transmission of infections.3
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This seems especially interesting, since most models on tick-borne infections use1

continuous time, thus neglecting developmental delays and assuming that newly2

infected ticks are immediately capable of infecting new hosts.3

The life cycle we assumed for ticks was particularly simple: larvae and nymphs4

that feed during a season emerge as nymphs or adults at the beginning of the fol-5

lowing seasons; on the other hand, out of the eggs produced by fed adults during a6

season a proportionp of the larvae emerge during the same season, while the rest,7

1 − p, emerge at the beginning of the following season. In reality, ticks’ devel-8

opment periods are strongly influenced by climatic factors (Randolphet al., 2002)9

so that often the interaction of the development period and the onset of winter is10

indeed such that ticks will emerge in the new stage in the following spring, but11

sometimes they will be able to emerge within the same growing season. All tick12

stages, not only for larvae as assumed in the model, will spread their emergence13

times among different months and years; moreover, the extent of this spread will14

vary among years due to climatic fluctuationsGern and Humair(2002) andCEA15

Report(2000), and will also depend on the time in which the ticks have fed. Our16

choice of letting all nymphs and adults develop during winter has been made for the17

sake of simplicity, so that we would be able to assess the effect of this time delay18

on the dynamics of the infection. There would be no problem in adding many dif-19

ferent paths within years, and from one year to the next. However, the analysis,20

which was already rather cumbersome in our case, would probably become more21

awkward. Finally, we must remark that we found it preferable to assume that the22

development of at least one stage (in our case, larvae) was spread among years.23

Otherwise, if p = 1, system (7) would decouple into three separate systems for24

yearsn − 2, n − 1, andn.25

As already discussed, the emergence time is spread over several weeks, and gen-26

erally differs among stages. This could certainly be added to the present model,27

yielding more realistic abundance curves of questing ticks, but without strongly28

affecting the dynamics, we believe.29

The dynamics of the model for the population of ticks appears to be generally30

rather simple. If the density-dependent functions (moulting rates) are of compen-31

satory types, for instancemz(x) = sz
1+µx , there exists a unique equilibrium which is32

always asymptotically stable. Even when the density dependence is of the Ricker33

type (mz(x) = e−µx), for most realistic parameter values there is a unique equi-34

librium, and this is generally asymptotically stable, although for high values of35

the parameterp (the probability of immediate development of larvae) and of the36

feeding rates (which would occur at extremely high host population densities), a37

Neimarck–Sacker bifurcation may occur, giving rise to oscillating tick population38

densities (seeFig. 7). It must be remarked that destabilization of equilibrium tends39

to occur with high values ofp, and hence when delays are shorter (contrary to the40

general view on the effect of delays) but when each cohort tends to reproduce sep-41

arately over the generations; in fact, whenp = 1 even- and odd-year cohorts are42

completely decoupled.43
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This model of tick population dynamics provides a natural framework for intro-1
ducing the dynamics of a tick-transmitted infections. The resulting model consists2
of three coupled difference equations whose variables are the densities of infected3

nymphs, of infected hosts, and of susceptible hosts at the beginning of each season.4

For reasonable parameter values, the density of infected hosts at the beginning of5

each season is negligible, and the density of susceptible hosts is not very far from6

their carrying capacity, so that the system can be approximated by a single differ-7

ence equation. The function relating the density of infected ticks of one year to that8

of the previous one is, however, rather complex and cannot be written in an explicit9

form, so the system has been analysed mainly through computer simulation. 10

The most interesting result we found has been the dependence of the equilib-11

rium density of infected ticks on host densities. A so-called ‘dilution effect’ of12

non-competent hosts had already been found in the analysis of a continuous-time13

model (Normanet al., 1999). At low levels, an increase of non-competent hosts14

causes an increase of tick densities, and hence more possibilities of transmitting15

the infection; however, increasing further the densities of non-competent hosts may16

result to most bites of infected ticks being ‘wasted’ on hosts not capable of acquir-17

ing and transmitting the infection. This fact has been found in this model too and18

actually this ‘dilution effect’ causes extinction of the infection at much lower den-19

sities than had been found in continuous-time models for similar parameter values20

(Rosà et al., 2003). In this case, pathogen extinction occurs at densities about 421

times the average densities of Trentino (Fig. 10) against 1000 times higher for the 22

continuous-time model. 23

Unexpectedly, we found that the ‘dilution effect’ occurs in this model also for24

competent hosts (left part ofFig. 10); the explanation of this cannot be in bites 25

being ‘wasted’ since these hosts would all contribute to infection transmission.26

Indeed, the explanation for this dilution effect can be found by looking at the27

expression (26) for the reproductive ratio. Simplifying the exact value, we may28

say thatR0 can be obtained by multiplying the probability that a newly infected29

larva infects (as a nymph) a susceptible host times the average number of larvae30

that bite that host during its infectious period. 31

The probability is equal tomL(L̄)qNβN
1 H ∗

1ψ
N/(dN + gN ) which, when hosts of 32

type 1 are very abundant, is approximatelymL(L̄)qN , since then each larva will 33

find very quickly a host of type 1. 34

On the other hand, the average number of larvae that bite a host is equal to35

L̄βL
1ψ

L/(b + γ ); when hosts of type 1 are very abundant,ψ L goes to 0, while 36

L̄ tends to a constant, so the number of infected larvae goes to 0, causing the ‘dilu-37

tion effect’. In other words, when hosts are very abundant, each one will find few38

larvae around; hence, an infected host will not be able to spread the infection suf-39

ficiently. This model prediction depends on the fact that, even when the density40

of hosts of type 1 becomes infinitely large, the number of ticks remains limited,41

both because hosts of type 2 are needed for reproduction, and because the feeding42

ratesgz become at most equal toσ z. From the graphs shown (Fig. 10), it can be 43
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seen that this ‘dilution effect’ occurs at realistic population densities, not only at1

‘infinitely large’ densities.2

Several studies have been performed on the dilution effect that non-competent3

species may produce; especially for Lyme disease in North America, the value4

of mammal biodiversity in decreasing infection prevalence of ticks has been sug-5

gested byLoGiudiceet al. (2003). As far as we know, nobody had suggested that6

also a high density of competent hosts might decrease Lyme disease prevalence;7

since the mice densities theoretically required to cause this decrease are rather high,8

probably experimental work would be needed to test whether this effect is real.9
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