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Seasonal Population Dynamics of Ticks, and its Influence
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In this paper, a simple semi-discrete (ticks’ feeding is assumed to occur only during
the summers of each year) model for tick population dynamics is presented. Con-
ditions for existence, uniqueness, and stability of a positive equilibrium are found;
the system is then studied numerically using parameter estimates calibrated for the
tick Ixodesricinusin Trentino, Italy, and the sensitivity to parameters is examined.

Then, this model is extended to consider a tick-transmitted infection of one
species of hosts, while other hosts are incompetent to the infection. Assuming,
for simplicity, that the infection is not affecting the total number either of hosts or
ticks, a threshold condition for infection persistence is obtained. The dependence
of the equilibrium infection prevalence on parameters is studied numerically; in
particular, we considered how infection prevalence depends on host densities. This
analysis reveals that a ‘dilution effect’ occurs both for competent and for incompe-
tent hosts; this means that, besides a lower threshold for host densities for infection
to persist, there exists also an upper threshold: if host densities were higher than the
upper threshold, the infection would go to extinction. Numerically, it is found that,
for realistic parameter values, the upper threshold is not much higher than observed
densities.

(© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Tick-borne diseases [for instance, rickettsiosis, Lyme disease, Ehrlichiosis,
relapsing fever, TBE (tick-borne encephalitis)] are serious health problem affect-
ing humans as well as domestic animals in many parts of the world. These
infections are generally transmitted through a bite of an infected tick, and it
appears that most of these infections are widely present in some wildlife species;
hence, an understanding of tick population dynamics and its interaction with hosts
is essential to understand and control such dise&bas$spnet al., 2002).

*Author to whom correspondence should be addresSethail: pugliese@science.unitn.it

0092-8240/04/000001 + 26 $30.00/0(© 2004 Society for Mathematical Biology. Published by
Elsevier Ltd. All rights reserved.
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Our work is tailored to Lyme disease, which is transmitted, in Europe and North
America, by Ixodes ricinus. Ixodidae ticks, after hatching from eggs, go through
three life stages: larva, nymph, and adult. They pass from one life stage to another
by moulting, after a blood meal. In temperate climates, the life cycle is strongly
influenced by the seasonal rhythm: simplifying a very complex patiRamdolph s
et al., 2002, one can say that larvae and nymphs who feed in the season in whieh
they emerge generally develop into nymphs and adults respectively in the next
season. If they do not feed in their first season (summer), most die off but some
(especially nymphs) can survive through winter and feed in the following yeag
developing (into adults) in the same year in which they feed. Adult ticks feed
also during winter; they mate, with the male dying shortly after mating and the
female remaining longer on the host. Afterwards, the female drops off the hast
and deposits about 3000 eggs. The hatching of larvae takes several weeks (48+135
days) and they start appearing from the summer onwards. 14

For most of the infections named above, transmission occurs during blood meais:
a tick feeding on an infected host may become infected, and then carry the infectien
throughout its life, being able to transmit the infection to subsequent hosts. Rer
some infections, especially TBE, infection may also be transmitted directly amoing
ticks feeding close to each other (‘co-feedinglpfeset al., 1987); this route will 19
not be considered in the present paper. 20

There exist several papers [for instanCayracoet al. (1998, O'Callaghanetal. 21
(1998, Normanet al. (1999, Ros et al. (2003] that model tick and infection 22
dynamics as a continuous process in time. However, as already described, tick
population dynamics is strongly influenced, in temperate climates, by the seasonal
pattern, with tick development from one stage to the next generally requiring ogae
year. Randolph and Rogeid997 described tick population dynamics under thezs
influence of environmental conditions, whilandberg and Awerbudi992 used 27
a matrix model with month-dependent transition rates; neither of them, however,
considered infection transmission. 29

Here we present a simple model for tick dynamics and infection transmission that
takes into account the seasonal cycle, albeit in an extreme way. Tick feeding and
infection dynamics is described as a continuous process in each ‘summer’, while
tick development occurs through ‘winters’. Therefore, we obtain a semi-discrete
model in the variable& ,, N,, and A,, the densities of larvae, nymphs, and adultsss
at the beginning of seasam We find the threshold conditions for tick persistence,ss
and for the stability of the endemic equilibrium. 36

This simple model is then extended to consider infections from ticks to host asd
vice versa, under the simplifying assumption that infection is not affecting the total
number of either ticks or hosts. Here too a threshold condition for infection-freg
equilibrium is obtained. 40

The system is then studied numerically, using parameter estimates based on data
obtained from the Centre for Alpine Ecology, but considering also, through bifurca-
tion diagrams, how uncertainties in parameters reflect in the qualitative behaviagir
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of the system. In particular, we study the effects of season length, host density,
probability of immediate development, and winter survival probability of larvae on
tick and infection dynamics.

2. THE MATHEMATICAL MODEL FOR TICK DYNAMICS

As stated above, we consider a very simple model for tick dynamics with two
distinct seasons: ‘summer’ and ‘winter’. Feeding occurs as a continuous process
during summer, while only moulting generally occurs in winter. To be precise,
we assume that larvae and nymphs that feed during one ‘summer’ go through
the moulting stage but arrest their development and emerge (as nymphs or adults,
respectively) in the following ‘summer’. On the other hand, we assume that after
the adult females feed and produce eggs, a proportion of the eggs hatch imme-
diately, so that larvae emerge in the same ‘summer’, while the rest arrest their
development, and larvae emerge in the following ‘summer’. Finally, we assume
that larvae, nymphs, and adults die at the end of the ‘'summer’ in which they have
emerged, if they have not succeeded in feeding. Of course, these assumptions are
rather crude with respect of the complex interactions between climatic factors, indi-
vidual fat reserves, and feeding timlegndolphet al., 2002; we believe, however,
that they capture some essential features of ticks’ seasonal rhythm.

For the sake of simplicity, host population is assumed to be constanR[z=e
et al. (2003 for other assumptions].

These assumptions translate into the following model: in summméne vari-
ablesL(t), Nn (1), and A, (t) (densities of larvae, nymphs, and adults at tinod
summem) satisfy the following system of differential equations:

La(t) = pegain(®) — (du + gu)La(®),
Nn(t) = —(dn + 9gn) N (1), 1)
An(t) = —(da + ga)An(d),

whered, (z = L, N, A) are the death rates (during the season) of the various
stages, and, their feeding rates. Feeding rates will depend on encounter gates
and host densities; since we assumed host densities to be constant, feeding rates
will also be constant: however, when we consider how tick dynamics is affected
by host densities, we will use the explicit dependencg,afn host densities.

The constanp is the probability of immediate development of tick larvae, and
is the number of larvae produced per feeding adult (considering also their sex ratio);
the latter is assumed to be constant [in contrast to the cag®ofaret al. (2003)],
since in the literature density dependence is documented in moulting probabilities
(Randolph and Roger&997 but not in this quantity.

To this equation, valid ii0, T) (T is the length of a summer), we associate initial
conditions, depending on the previous year’s variables; to be precise:
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Ln(0) =w fy (1= P)oGaA-1(9s

Nn(0) = m(Ln-1) fOTgL Lnh-1(S)ds 2)

An(0) = mN(Nn-1) fy 9nNh-1(S)ds. 2
Herew is the probability of survival through winter for larvae that have delayeds
developmentmz(-) are the moulting rates, assumed to be decreasing functions of

the average density (over the season) of that stagd&jaedolph and Rogef4997) 5
for empirical evidence for this assumption]. The average densities are defined as

1 T
Coi=7 [ Lo ®
and analogously foN,_;. 8
Solving (1), we find 9
N,(t) = Nn(o)e—(dN+gN)t
Ant) = Aq(O)e (Caront
La(t) = pcga fy € @009 A (s)ds 4)

q . e~ (dat+gnt _ a—(di+gut
= Lp(0)e"@F9 4 pegaAn(0)

di +9L — (da+9n) 10

under the generic assumptidn + g # da + ga. 11

From @), we obtain 12

Nn_1(0) — 1

Nog = — . v and Lpoq= ?(pCfAl’Li Anc1(0) + 74 Lnoa(0),  (B) s

where ; . . 14
A4 / o Fonsgs — 1 — e (@n+gn)

0 (dn +9n) 1

represents the average time spent questing by a nymph, 16

T 1— e (@L+o0)T
-L—Ld — / ef(dL‘l’gL)st — -
0 (de +90)

represents the average time spent questing by a larva that has delayed development,

T
fA — gA/ e*(dA‘l’gA)st — gA (1 _ e*(dA‘i‘gA)T)

0 dA + gA 19

represents the probability that an adult feeds, and 20

oa [T T
L = f_/ e—(dA+gA)5/ e~ (@L+90(=9(t ds
A JO 5
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represents the average time spent questing by a larva with immediate development,
remembering that this will start at timseof a season.

The constantsy andr, arise naturally from4), and happen to have a nice
biological interpretation. On the other hand, the constdntaind r; have been
introduced in order to give a consistent biological interpretatiorbpfTo see that
(5) is indeed correct, one can compute

ga . da
(da+0a)d.+090) di+09.—(da+39a)
e ([da+gn)T e (di+g0)T
X —
( da + 0a d. + 0. )
T g=(datga)t _ g—(di+gut
o dL+9L—(da+9n

fAfLi =

Note that, for reasonable values of death and feeding rates, and of season lengths,
the exponential terms in these expressions are very close to zero, and one has the
approximations

1 N N 1 N da
dn + On

(6)

N N

~r . f .
fla ™ Tl d.+a. A da + 0a

With this notation, we can then obtain a discrete system for the densities at the
beginning of each seasoih:, = L,(0), N, = N,(0), and A, = A,(0). In fact,
from (2), using @) and 6), we obtain

L, c(1— pwfaAn_1,

Nn = gu(facpry An1 +tglnme (

Nn_1T
Ay = QNTNNn—lmN< nTl N>.

( fACpTLi An—l + TLq I—n—l))
T 9

(7)
All the parameters used in this model are presented, together with their biological
interpretation and a reference valueTeble 1
Let us now look for a stationary (ove) solution of (7): setL, = L*, N, = N*
and A, = A*in (7). From the first equation, we obtain

L* =c(1l— pwfasA". (8)

Then, using &) in the second and third equation, we obtain

*

cfaA
N* =cg faA"(pty, + (1 — p)wrLy)me ( A

T (pry, + (1 — p)erd)) 9)
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Table 1. Notation used to denote the various parameters included in the model, together
with the reference values used. In all parameters time is measured in days, and host densi-
ties are per hectare.

Symbol  Description Value

H;, Ho  Densities of two types of hosts 30,0.1

ﬁf Rates of encounters between questing ticks in stage = 0.028, 0.0009, 0
L, N, A) and hostHq

/35 Rates of encounters between questing ticks in stage = 0.05, 0.03, 0.13

L, N, A) and hostH»
Detachment rate of ticks in stage(z = L, N, A) feeding on 0.5
hostsH; (i =1,2)

c Computed quantity BE /B!
0z Feeding rates in stage(z = L, N, A) given by the relation 0.31, 0.028, 0.013
(18
d; Death rates of questing ticks in stagéz = L, N, A) 0.05, 0.03, 0.03
mz(x)  Moulting probability depending on average valuesf ticks in ~ 0.15 e~0-00&
stagez
p Probability of immediate development of tick larvae 0.8
w Winter survival probability of larvae that have delayed develo®.1
ment
T Length of summer 182
c Average number of eggs per fed adult 1300
and 1
N*
A" = ON N*erN (?'EN> . (10)
Substituting £0) in (9), we see thatN* can either be equal to 0, or it must be a 3
solution of the equatio®G(N) = 1 where 4
C1
G(N) = gLemu(c:N)m (ENmy (c2N)) )
with 6
N
c1 = cfagntn(pry + (1= pPwr,) and = T 7
Once we have a solutioN* of G(N) = 1, (8) and (L0) yield A* and hence_*. 8
Thus we have a nontrivial equilibrium, s& = (L*, N*, A*). 9
If we assume 10
lim min{m(x), my(X)} =0 (12) 4
X—>00

we then see that a sufficient condition for having a nontrivial equilibriu®(@® > 1
1,i.e., 13

greimy(0)m (0) = cg fagnTn(pry + (L= pwt )myOme(0) > 1. (13) 14

Condition (L3) can be easily interpreted. In fagy tn represents the probability 1

a
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that a nymph feeds; analogousty,(pr; + (1 — p)wt,) represents the probabil-

ity that a larva feeds, averaging over the probabiitihat it develops immediately,

and that, discounted by overwinter survival probability that it delays develop-
ment. Hence, the left hand side df3f computes the expected number of larvae
produced by a larva, when density-dependent effects do not operate: the probability
of developing into a nymplg, (pr.; + (1 — p)wr )M (0)) times the probability

that the nymph develops into an ad(dt, Ty My (0)) times the expected number of
larvae producedfac).

Now we are interested in finding conditions that guarantee unigueness of the
roots of G(N) = 1, and hence of the positive equilibrium. If eith@f or my is
constant, while the other is decreasing, it is immediate from the expreskipn (
thatG(N) is a decreasing function; hence, there is at most one roB{ bff) = 1.

Things are different if bottm_. andmy are decreasing functions, because then
G(N) could be increasing. We will consider in detail two possible choice for these

functions:
S;

1+ ux
forz= L, N; heres, = m,(0) represents the probability of moulting in a tick-free
habitat, whilexw measures the strength of density dependence in moulting proba-
bility.
First, we computes’(N) without specifying the functions,(-); then we will
insert L4). We have

m,(X) = or m;(X) = s, "X (14)

c? C
G'(N) = %m’L (71 NmN(CZN)> [Mn (C2N)1? + gL crcamiy (62N)

X [mL (%NmN(czN)> + %NmN(czN)m/L (%NmN(czN))] .
(15)

The first term in 15) is clearly negative. As for the second term, we see that

mL(X) = 7 j;x satisfies

me(X) +xm{ (x) > 0 vV x>0. (16)

Hence the term in square brackets 1%)(is positive, and the whole expression is
negative.

On the other hand, i (x) andmy(X) are exponential functions, the situation
is not this easy, and we need to compitd) explicitly. Let thenm, (x) = s e #*
andmpy (X) = sye#* (for the sake of simplicity, we chose the same constaint
both functions); settingec,N = X, equation {1) with G(N) = 1 reduces to

f(x) =0, a7)

where f (X) = x(cze™* + 1) — log(cy), with



| YBULM: 452|

8 M. Ghosh and A. Pugliese .
C1S

Cs = —— = cfagn(pr, + (1 — Pwr,)sy )
Tc

C4 = QLC1S SN = gLeim (O)my (0). 3

From equationX?) it is immediate that to have a positive root we needdgy > O; 4
this is equivalent to condition1@), which is then, in this case, a necessary ands

sufficient condition for the existence of positive equilibria. 6
Still we may have more than one positive root of equatibr),(and we look for 7
conditions that guarantee uniqueness. 8

We note thatf'(x) = 1 + ¢z *(1 — x), and f"(X) = cze *(x — 2). This 9
implies that the minimum of '(x) is atx = 2; hencef’(x) > f'(2) =1 —-cze2. 1
Thereforef’(2) > 0 (i.e, c3 < €) = f'(x) > 0V x. 1

Thus we see that a sufficient condition for the uniqueness of the positive raet
of (17) is c3 < €. This condition is largely satisfied for the parameter valuess

estimated from field data (see below). 14
The Jacobian matrix corresponding to the syst&jnaf the equilibrium point s
(L*, N*, A*) can be written as follows: 16

0 0 cl—puwia

M = My 0 Mp3 s
0 Mmzo 0 17
where 18
facpr A" + 7 L*
m21=9LTLdmL< ACPTL T p > 1

fACpTLi A+ 1 L*
T : =07,D 20

T
+ gL( fACpTLi A* + Ty L*)$m/|_ (

fACp‘L'Li Af + TLg L*
My3 = g facpry, | ML

T 21
fACpTLi A+ L* , fACpTLi A+ 1 L*

+ T —m T - = 0 facpz, D ’r

Ma2 = gnon [Mn (C2N™) + C2N*mi (C2N™)] 23
andD = [m ($N*my(c2N*)) + 2 N*my(cN*)m( (2 N*my(cN))] 2
Herem,(u) (wherez = L or N) denotes the derivative of the functiom(-) with 25
respect to its argument, computed in terms of the value 26
We immediately note that, ih,(X) = %ZX we have thain,, mo3, andmg, are 27
all positive since then conditiori§) holds. 28
Now, the characteristic polynomial &f is given by 29

P()\) = )\3 — My3M3zoA — C(l — p)wa mMy1M3o. 30
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The necessary and sufficient conditions (Jury conditions) for all rod®of = 0
to satisfy|A| < 1 are

() P >0
(i) (-D3P(-1) >0;
(i) |ag] < 1 and|bs| > |by|, where
ag = ¢(1— p)wfamzims; by =1- a3, b1 = —my3ma,.

It is easy to see that

P(1) =1—- G(N*) — N*G'(N*) = —N*G'(N*).

Hence, ifG'(N*) < O [which will always be true whem (x) = 1+S;LX and,
more generally, when there exists a unique positive equilibrium], condition (i) will
always hold.

Moreover, if the coefficientsn,;ms, and mysms, are both positive, condition
(i) implies (ii) and (iii). Hence, from the previous considerations, we see that, if
m,(X) = %ﬂzx the unique positive equilibrium is always stable when it exists, i.e.,
when (L3 is satisfied.

On the other hand, ih,(x) = s, ##*, conditions (ii) and (iii) do not follow from
(i), so that it is possible to have a (unique) positive equilibrium which is unstable.
This is later shown numerically.

Note finally that condition (i) for the stability of the tick-free equilibriuy =
(0,0,0) is g.cimy(0)mL (0) < 1, i.e., the opposite ofl@); since in this case
My, My3, andms; are all positive, conditions (i) and (iii) will then be automatically
satisfied.

2.1. Simulations. The simulations were performed using parameter values con-
sidered to be reasonable for describing Ixodes ricinus tick populations in Trentino
[see CEA Report(2000 for background information]. As ifRosa et al. (2003,

the feeding rateg, are assumed to depend on host densities according to a saturat-
ing function, because of the extended feeding period. To be precise, we used the
relation

BiH1+ B3 H>

Hy, Hp) =
gz(Hy, Ho) 1+ CH. + &H,

(18)

where H; and H, are the densities of two types of hosts (typicaly and H,
represent rodents, especiafipodemus spp. andChlethryonomis galreolus, while

H, represent ungulates, especially roe degf)are the rates of contacts between
hostsi and questing ticks in stage(z = L, N,ZA), o/ are the detachment rates of
ticks in stagez feeding on hostsi;, andc? = g'z This saturating function is found
using a quasi-equilibrium relation in a model that distinguishes between questing

and feeding ticksN\lwambi et al., 2000).
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All parameter values used are showrTable 1t we briefly sketch here the moti- 1
vation for the choices. From several experiments and observations, describec:in
Rosa et al. (20049, estimates for the encounter ra@%were found, and these are s
reported inTable 1 The following estimates (measuring time in days, and host
densities per hectare) were obtained: 5

pr =0.028 BY =0.0009 B=0, By =005 gY =003 g5 =0.13 6

The duration of a meal is in the range of 2—3 da§sr{enshingl99J), so thats” ~ 7
0.5 d!. Densities of rodents in the province of Trento range, according to year and
location, between 5 and 30 per hectare, while densities of roe deer are generally
around 0.1 per hectare. Using the previous estimateshita 30, H, = 0.1, we 10
get the following values fog,, gn, andga that will be used as reference values: u

g.=031, gy=0028 ga=0013 (dyk "

As for demographic parameters, we use the following values based on some liter-
ature datac = 1300 (average number of eggs per fed adult), taking into accoumnt
al:1 sexratiod, = 0.05dy = da = 0.03 (death rates of questing ticks). 1s
As for the moulting probability of fed larvae and nymphs, we choose exponential
functions, using 0.15 as a normal moulting probabilifu(nairet al., 1999; the 1«7
value of u is chosen so as to have a reasonable density of nymph population per
hectare(N* ~ 400). Finally, the values op = 0.8 andw = 0.1 have been chosen 1s

somewhat arbitrarily. 20
For the reference values, systemitijas a stable equilibrium, to which all numer- 21
ical solutions appear to converge (see an exampiggnl) to the values 22
L* = 147124 N* = 376846, A* = 20.6533 23

We have studied rather extensively how the equilibrium values depend on the
parameter values. IRig. 2 we show the dependence @n the probability of 25
immediate development. It can be seen thahust be larger than 0.22 to have a 2
positive equilibrium, and that the equilibrium densities of nymphs and adult ticks
always increase witlp [this can be understood from3), since, for these parame- 23

ter valuesg, > wr]. 20
Season lengthiT) also, as expected, has a positive effect on the equilibrium leved
of ticks, as shown ifrig. 3. It appears that the dependence is almost linear. 31

A more complex effect can be seen in the variation of the equilibrium when the
feeding rates are changed. Aig. 4, we show the dependence Mf ongy. First a3
of all, it can be seen that, surprisingly, the relation is not monotone. Initildity, 34
increases wittgy, but, at values not much higher than the estimated one, it staris
decreasing. Second, at a valuegaf ~ 0.43, there is a Neimarck—Sacker bifurca- ss
tion, meaning that fogy greater than that, the equilibrium will be unstable, ands:
there will probably be periodic or quasi-periodic solutions. Remember that, if the
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Figure 1. Variation of larvae, nymphs, and adults with time. The parameter values are as
in Table 1

400 T T T T

350+ ]
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Larvae
Nymphs
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Figure 2. Variation of the equilibrium level of larvae, nymphs, and adults witAll other
parameter values are asTiable 1

not occur.
In Fig. 5we show the Neimarck—Sacker bifurcation points in the two-dimen-

sional(p — gn) plane. It can be seen that high values of either parameter tend to

Trox had been used, instability

of the equilibrium could
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Figure 3. Variation of the equilibrium level of larvae, nymphs, and adults WitAll other
parameter values are asTable 1
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350 o NS T

300 B

250 B
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150 1+ B

Nymphs density ———=

100 1+ B
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0 ! ! ! !
0 0.2 0.4 0.6 0.8 1

gy ————=

Figure 4. The equilibrium level of the nymphs for varyigg . All other parameter values
are as infable 1 NS is the value at which Neimarck—Sacker bifurcation occurs.

destabilize the equilibrium; a similar pattern is showrkig. 6for the (ga — 9n) 1
plane. 2
In Fig. 7, we show a numerical simulation of the system for parameter values
beyond the Neimarck—Sacker bifurcation point. It can be seen that the solutian
approaches a four-year cycle. 5
The feeding rates depend on host densities through the relaiBhdHowever,
changing host densities will affect all feeding rates simultaneously, and so the
parametersfa, Ty, 71;, T, present inG(N). In order to understand this cumu- s
lative effect, we computed the equilibrium values for different sets of parameters
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Figure 5. The stability region in thg — gn) plane. All other parameter values are as in
Table 1
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Figure 6. The stability region in th@a — gn) plane. All other parameter values are as in
Table 1

obtained by changindgd; and H,. Fig. 8a) and8(b) shows the effect of host
densities on the equilibrium level of nymphs; in the upper paris kept fixed at

0.1, whileH; varies between 5 and 50 (which encompasses densities usually found
in the region); in the lower part; is fixed at 30, whileH, varies between 0.08

and 0.12.

3. THE MATHEMATICAL MODEL FOR TICKSWITH INFECTION

In this section we integrate the previous model for tick population dynamics with
the dynamics of a tick-borne infection.
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Figure 7. A numerical simulation of systerh) (beyond the bifurcation point. The param-
eter values used agg¥ = 0.2, g” = 0.05; all other parameter values are aJable 1
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Figure 8. The equilibrium value of nymphs for varyihty and Hy. All other parameter
values are as iffable 1

We assume that infection is transmitted from infected ticks to susceptible hosts,
or vice versa from infected hosts to susceptible ticks, while a tick is feeding
on a host. A larva feeding on an infected host will become, after moulting, an
infected nymph; analogously, a nymph feeding on an infected host will become
an infected adult. In both cases, infection is assumed to last forever. On the
other hand, we will assume that a host, after a period of infection, will become
immune and no longer capable of transmitting the infection, although the evidenee
is dubious. 8
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For the sake of simplicity, we disregard transmission between co-feeding ticks,
although this may be relevant in certain infectiofg et al., 2003. We also
assume that the infection does not affect either tick or host demography; hence,
we can assume that host population is constant (otherwise, it might fluctuate for
reasons other than interactions with ticks), and also that total tick population is
described by the model presented in the previous section.

Therefore, the variables of the model will be just the densities of ticks and hosts
in the various infection stages: to be precise, we will consider susceptiifos
and infective(N') nymphs N = NS + N' will satisfy equation 7)]; similarly, we
consider susceptibles®®) and infective(A') adults(A = AS + A'). Only hosts
of species 1 are assumed to become infected. These are divided into susceptibles
(H9), infectives(H'"), and immungH") classes wherél; = HS+ H' + H' is
taken as a constant.

We will append a subscript to denote the values of the variables in the yrar
As in the previous section, we assume that tick feeding occurs only during sum-
mers, of lengthT . The equations for the tick stages are exactly 1Re €xcept that
we distinguish between susceptible and infected ticks. Using the same assumptions
as inRos et al. (2003, the following differential equations valid fdre (0, T)
are obtainedT is the length of the summer):

Ln = pcga(A, + AY) — (dL + )L,

NS = —(dn + gn)N5,

N = —(d + gn)N, (19)
A = —(da+ A,

A, = —(da+ g A,

Hosts can become infected (with probabilif§) if an infective tick feeds on them.
As in the previous section [see alBws et al. (2003] we assume that feeding
ratesg” have the form18) which we rewrite as

g%(Hi1, Hp) = (B{H1 + B5H2) ¥ *(H1, Hyp) with
1
1+ CiHl + C;Hz'

VY%(Hy, Ho) =
Hence, the rate at which susceptible hosts become infected is
gV BN YN (Hi, HON! + g8y A (Hy, Ho) Al

giving rise to the following equations:
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HS = ay(H)Hy — biHS — gV BN HSY N (Hi, Ho) N
—g*BPHSY A(H1, Ho) A,
Qi N oN N i AnpA A i i (20)
H, = a" B1 Hyy" (Hi, H)N] + 9”8 HSw “(Hy, H) A, — (b + y)H,.,
HI = yH! — by HI. 2

During winter, hosts are assumed to follow the same equations, except for the
infections. Hence in winten for t € (T, 365, we have the following equations: 4

He = ay(H)Hy — by HE,
HY = —(by+ y)H], (21)

Finally, (19) and @0) need to be complemented with initial conditions. Those fors
hosts come simply from2(l) with the appropriate change in subscripts. Those for-
ticks are the same a8)( except that we keep track of the fact that larvae (nymphsk
that have fed on infected hosts will emerge as infected nymphs (adults): 9

T .

L2 (0) = w /O (1— P)oga(AL(9) + AS(8)ds,
NS, (0) = m“(Cy) [ / gL Ln(S)ds — / ﬁlLH,szLLn(s)ds]

0 0
Ni,,(0) = m-(Ty) f BLH (8 Lo(s)ds,

0

AS.1(0) = mN(Np) [ / anNS(s)ds — / B HA(szN:(sms], (22)

0 0

A L0 = mY (N / BNHI©Y NS (S)ds,
0
H;?H(O) = Hr?(365),
H!..(0) = H}\(365),
Hr§+1(0) = H,ﬁ(365). 10

All parameters of the model9)—(22) are summarized ifiable 2 "

As already stated, we will consider this model only at stationary population sizes.
Namely, we will assume that 13

HS + Hy + Hy = H} 1
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Table 2. Parameters included in the model with infection beyond those already listed in
Table 1

Symbol  Description Value
b1 Birth or death rate of hodtl; 1/365
y Recovery rate of hodtly 0.01
g% Probability of becoming infected for a host 1 bitten by an infed.5
tious tick in stagez (z = N, A)

z i 1
) Computed quantity W
gN Computed quantity gNgNy

wherea; (H) = b;. As for ticks, we will assume

NS(t) + Ni(t) = N*e (@n+ont
AS(t) + Al (t) = Are (datont :
e (da+galt _ g—(dL—gu)t (23)

Ln(t) = L*e @+aut 4 pega AX = A*l(t
n(®) PCOa d. +9. — (da+0a) ©

with
e (dat+gat _ a—(dL+gut

d.+ 9. — (da+9a)

lt) =c¢ (pgA +(1- p)wae<dL+9L>t> ) (24)

The only unknowns of the model are theff(t), H (t), N (t), and A (t). If we

assume thag* = 0 (i.e., adult ticks do not feed on hosts 1, as is generally true
if they represent rodents), it turns out that all the other variables are independent
of the value ofA! (t), since we assumed that there is no transovarial transmission.

10

11

12

13

14

15

16

17

18

19

The only variables of interest are thetf(t), Hi (t), andN' (t).
We start by solvingX9) and @O0) on (0, T). To simplify the notation, we drop

the subscripts and we letb = b; = a;(H;) be the birth or the death rate of the

host population, ang™N = gqNgNyN. We easily find
N'(t) = N' (0)e~ (@t
We then have a linear equation faé:
HS + [b+ NN (0)e~INFTINHS = pH

which gives
HS(t) = HS(0)F4(t, N'(0)) + Hj Fa(t, N'(0)),

where

™
Fi(t, ND) = e—bte*%[lfeﬁdy\jwmt]
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and . - 1
Fot, N') = b /0 o9~y e NN et i
Similarly we can write, 3
H'(t) = H' (@& ®" + N (O[H*(0)G1(t, N'(0) + HiGa(t, N'(0))], s
where 5

t
Gq(t, N‘) = ﬂN/ Fi(s, Ni)e*(dN+9N)Se*(b+)/)(tfs)ds,
0

t
Go(t, Ni) = ,3’\‘/ Fa(s, Ni)e—(dN+9N)Se—(b+y)(t—s)dS.
0

7

Now, using 1) and @2), we obtain a system of difference equations in the vari-s
ablesN'[n] = N; (0), H'[n] = H}(0), andH3[n] = HZ(0): 9

N'[n+1] = Kk-A*(K'H'[n]+ HNIN'[N]Ry(N'[n])
+HN'[n]R2(N'[n]))

. oL AT . . 25
Hin+1 = pyHIN]+ pl,N'NI(HSIGL(N'[]) + H;Go(Ni ) )
H°[n+1] = p§HSN]FL(N'[n]) + H{ (1 — p§ (1 — F2(N'[n]))) 10

with 11

Fi(N)=F(T,N) and G;(N)=G;(T,N)forj=12 12

and 13
_ i T
k- =m-(Dy' gy K :/ e Y (tdt, »
0
pia — e—(b+y)365 plu — e—(b+y)(365—T) pi} — e—b(365—T) is
Ri(N') = / G1(t, NHI(t)dt, Ry(N') = / Ga(t, NHI(t)dt "
0 0
using, in all cases, the expressi@dy, 17

The structure of the systerl§) is rather simple, although the functions involved, 1s
F, G1, Gy, Ry, andR;, cannot be written in an explicit analytic form, and even theis
analytic computations that are possible (such as that'jato not help in making 2o
the results more transparent. 21

It must be noted however that, for reasonable values of the recovery rate 2.
have thatP}, p!, ~ 0; hence, the values df'[n] are always very close to 0, and 23
system 25) is approximately two-dimensional. 24
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3.1. Equilibriaand stability. System 25) has a disease-free equilibriumesg =
(0, 0, Hy). The Jacobian at equilibrium is

Jo=

k- A*H(Ri(0) + Rx(0)) k- A*K! 0
( pl, H(G1(0) + G2(0)) PL 0 )
p;, Hy (F{(0) + F5(0)) 0 p;, F1(0)

The eigenvalues al, arers = p; F1(0) = e 3% - 1 and the two eigenvalues of

_ <k'-A*H1*(R1(0) + Rx(0) kLA*k‘>
“\ PLH{ GO +G0) Py )

Since all components oA are positive, the dominant eigenvalue Afis real and
positive and through some computations that exploit the factphak 1, one
easily see that the dominant eigenvalue is larger than 1; Hegiseunstable if and
only if

kip' (Gy(0 G,(0
Ro.int = K" A*H; (Rl(O) + Ry(0) + P i(_)rj 2 ))> >1  (26)
a
From
p e—(b+V)T _ e—(dN+QN)T
G1(0) + G,(0) =
10 20) =5 dv+ov — (b+yp)
and
R1(0) + Ry(0) = i / T(e—“’+y>t — e (ANHINY)| ()t
dv+onv—(b+y) Jo

we obtain, recalling also the definition gf¥ andk",

m-(D)Bry g gy /T - _
inf = A*H b+t _ g=(An+gnty)
Ro.inf 1 0y + o — 0O+ ) ( ; (e e ) (t)dt

Kipl (e ®NT _ g (@ntanT)
1-p; ) '

(27)

ExpressionZ7) can be interpreted as the average number of larvae that get infected
starting with a newly infected larva. We can think that a larva infected during a
‘summer’ will have, in order to transmit the infection, to successfully moult and,
then, as a nymph, bite a susceptible host of type 1 and infect it. That host can then
transmit the infection to other larvae within the same season, or in the next year;
the first term in 27) counts infections occurring within the same season, while
the second term (which will be very small sinpg ~ 0) counts infections in the
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following years. If that host infects other nymphs, these are dead ends for the
infection, since, at least in this model, adults bite only incompetent hosts. 2
In order to interpretZ7), we note that, for a nymph emerging at the beginning ofs
a season, the probability density of biting a host of type 1 at fiige 4
/gi\l waNe*(dN+gN)s' 5

To obtain the probability density, for a newly infected larva, of infecting a host of
type 1, this quantity has to be multiplied by the probability of successfully moulting
(m-(L)) and that of infecting the hosty). The total number of larvae infected in s
the same season by that newly infected host will be computed by integratibg for
from time s to the end of the seasdnthe rate at which it is bitten by larvae: this 1o
IS 11

e OIS gE Ayt 12

sincee~®+ (=9 js the probability that the host is still alive and infectious at timess
t, and A*l (t) is the density of larvae at timeof a season. Overall, the average 1
number of larvae that, starting with a newly infected larva in yeayet infected in 15
yearn + 1is 16

T T
m-(L) / BN H oy Ne @ntansgN / e M9t Aty tdtds.  (28)
0 S

By exchanging the order of integratior28) can be written as 18

t t
m'-([)ﬁ{\' waNqNﬂi- A*wL / e= b+ (t) / P+ —(An+an)Isqg dt N

0 0
which, on computing the inner integral, is clearly equal to the first tern2 (20
The second term can be interpreted analogously. 21
The rather complex expressiod7j can be approximated, by recalling thaf ~ 22
0 and that the same is true for all exponential termsédik& )T e~ (An+anT ... 23
Then, one obtains 24

cA*BrHiym"(L)g" gy N
Ro.inf ~

An+on—(b+yndo+gr +b+y)dy+on +dL +9u) 2

x[pg (dN+gN+dL+gL_ b+y+d +0a. )
"\ b+y+dataon dn + On + da + 0a

+ w(l—p)faldn +9n — (b+ V)):| . (29)

27

Expression29) is still rather complex, so itis difficult to understand well the effectzs
of parameters. One can see that tick dendgity,density of hosts 1H,", probability 2o
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Figure 9. Variation in time of infected nymphs. Parameter values areTabies land2.

of host infection,g", all have a direct positive effect on infection persistence. On
the other hand, there are indirect negative effects, since an increase in tick den-
sity decreases the term“(L); considering then host densities: if they increase,
generally tick densities will also increase (as seen in the previous section) with the
consequent direct and indirect effects; moreover, increasing host density will also
decrease the terga", and affect all feeding rateg with results difficult to predict.

3.2. Effect of host densities. Using the reference values shownTiables land
2 for the parameters, we found th&§ i > 1 and that the solutions converge to an
endemic equilibrium with infection present (fig. 9we show a simulation).

Instead of performing a sensitivity analysis on all parameters, we concentrate on
the effect of host densities on the system, since this has also been the focus of other
theoretical works on tick-borne infectiondgrmanet al., 1999 Rosiet al., 2003.

As discussed before, it is not easy to study analytically the effect of host densi-
ties on the infection threshold, let alone on equilibrium densities. Therefore, we
resorted to a numerical study, whose results are showkign 1Q It turns out
that host densities have a non-monotone effect: there exists a first threshold below
which infection cannot be sustained, but also a second threshold above which infec-
tion is eradicated. In between, solutions converge to an endemic equilibrium, at
least for the parameter values considered.

Moreover, it can be seen that this negative effect of host densities on infection
persistence occurs at densities not much larger than those usually estimated in
Trentino: densities of infected nymphs and hosts start decreasing just as the den-
sity of hosts 2 (roe deer) passes beyond the average density (0.1) and go to zero
at a density of 0.4 per hectare; as for hosts 1, infection density starts decreasing
as density goes beyond 50-60 per hectare (against an average density in the range
10-30) and reaches 0 at a density around 110 per hectare.
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4. DISCUSSION 1

The aim of this paper was to study how the discrete nature of the tick life cycle,
especially in temperate climates, could influence the transmission of infections.
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This seems especially interesting, since most models on tick-borne infections use
continuous time, thus neglecting developmental delays and assuming that newly
infected ticks are immediately capable of infecting new hosts.

The life cycle we assumed for ticks was particularly simple: larvae and nymphs
that feed during a season emerge as nymphs or adults at the beginning of the fol-
lowing seasons; on the other hand, out of the eggs produced by fed adults during a
season a proportiop of the larvae emerge during the same season, while the rest,
1 — p, emerge at the beginning of the following season. In reality, ticks’ devel-
opment periods are strongly influenced by climatic fact®andolphet al., 2002
so that often the interaction of the development period and the onset of winter is
indeed such that ticks will emerge in the new stage in the following spring, but
sometimes they will be able to emerge within the same growing season. All tick
stages, not only for larvae as assumed in the model, will spread their emergence
times among different months and years; moreover, the extent of this spread will
vary among years due to climatic fluctuatioBern and Humaif2002 andCEA
Report(2000, and will also depend on the time in which the ticks have fed. Our
choice of letting all nymphs and adults develop during winter has been made for the
sake of simplicity, so that we would be able to assess the effect of this time delay
on the dynamics of the infection. There would be no problem in adding many dif-
ferent paths within years, and from one year to the next. However, the analysis,
which was already rather cumbersome in our case, would probably become more
awkward. Finally, we must remark that we found it preferable to assume that the
development of at least one stage (in our case, larvae) was spread among years.
Otherwise, ifp = 1, system 7) would decouple into three separate systems for
yearsn — 2,n — 1, andn.

As already discussed, the emergence time is spread over several weeks, and gen-
erally differs among stages. This could certainly be added to the present model,
yielding more realistic abundance curves of questing ticks, but without strongly
affecting the dynamics, we believe.

The dynamics of the model for the population of ticks appears to be generally
rather simple. If the density-dependent functions (moulting rates) are of compen-
satory types, for instanaa,(x) = JZW there exists a unique equilibrium which is
always asymptotically stable. Even when the density dependence is of the Ricker
type (m,(x) = e #*), for most realistic parameter values there is a unique equi-
librium, and this is generally asymptotically stable, although for high values of
the parametep (the probability of immediate development of larvae) and of the
feeding rates (which would occur at extremely high host population densities), a
Neimarck—Sacker bifurcation may occur, giving rise to oscillating tick population
densities (se€ig. 7). It must be remarked that destabilization of equilibrium tends
to occur with high values op, and hence when delays are shorter (contrary to the
general view on the effect of delays) but when each cohort tends to reproduce sep-
arately over the generations; in fact, whpn= 1 even- and odd-year cohorts are
completely decoupled.
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This model of tick population dynamics provides a natural framework for intro-
ducing the dynamics of a tick-transmitted infections. The resulting model consists
of three coupled difference equations whose variables are the densities of infected
nymphs, of infected hosts, and of susceptible hosts at the beginning of each season.
For reasonable parameter values, the density of infected hosts at the beginning of
each season is negligible, and the density of susceptible hosts is not very far fram
their carrying capacity, so that the system can be approximated by a single differ-
ence equation. The function relating the density of infected ticks of one year to that
of the previous one is, however, rather complex and cannot be written in an expligit
form, so the system has been analysed mainly through computer simulation. 1o

The most interesting result we found has been the dependence of the equilib-
rium density of infected ticks on host densities. A so-called ‘dilution effect’ ofi2
non-competent hosts had already been found in the analysis of a continuous-time
model Normanet al., 1999. At low levels, an increase of non-competent hostsu
causes an increase of tick densities, and hence more possibilities of transmitting
the infection; however, increasing further the densities of non-competent hosts may
result to most bites of infected ticks being ‘wasted’ on hosts not capable of acquit-
ing and transmitting the infection. This fact has been found in this model too and
actually this ‘dilution effect’ causes extinction of the infection at much lower dento
sities than had been found in continuous-time models for similar parameter values
(Rosa et al., 2003. In this case, pathogen extinction occurs at densities about24
times the average densities of Trentifdg; 10 against 1000 times higher for the 2.
continuous-time model. 23

Unexpectedly, we found that the ‘dilution effect’ occurs in this model also fogs
competent hosts (left part ¢fig. 10; the explanation of this cannot be in bites 2s
being ‘wasted’ since these hosts would all contribute to infection transmissiosn.
Indeed, the explanation for this dilution effect can be found by looking at the
expression Z6) for the reproductive ratio. Simplifying the exact value, we mayes
say thatR, can be obtained by multiplying the probability that a newly infectecks
larva infects (as a nymph) a susceptible host times the average number of lanwae
that bite that host during its infectious period. 31

The probability is equal tent (L)gN AN H;yN/(dn + gn) which, when hosts of s
type 1 are very abundant, is approximatety (L)gN, since then each larva will s
find very quickly a host of type 1. 34

On the other hand, the average number of larvae that bite a host is equaksto
LByt /(b + y); when hosts of type 1 are very abunda#t; goes to 0, while
L tends to a constant, so the number of infected larvae goes to 0, causing the ‘dilu-
tion effect’. In other words, when hosts are very abundant, each one will find fex
larvae around; hence, an infected host will not be able to spread the infection suf-
ficiently. This model prediction depends on the fact that, even when the density
of hosts of type 1 becomes infinitely large, the number of ticks remains limiteek,
both because hosts of type 2 are needed for reproduction, and because the feeding
ratesg” become at most equal to*. From the graphs showirig. 10, it can be a3
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seen that this ‘dilution effect’ occurs at realistic population densities, not only at
‘infinitely large’ densities.

Several studies have been performed on the dilution effect that non-competent
species may produce; especially for Lyme disease in North America, the value
of mammal biodiversity in decreasing infection prevalence of ticks has been sug-
gested byLoGiudiceet al. (2003. As far as we know, nobody had suggested that
also a high density of competent hosts might decrease Lyme disease prevalence;
since the mice densities theoretically required to cause this decrease are rather high,
probably experimental work would be needed to test whether this effect is real.
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