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Abstract. A mathematical model for tick-borne infections is presented. The con-
ditions for parasite persistence were examined in [7]. Here we show some numerical
results, using parameter estimates based on data provided by the Centre for Alpine
Fecology; we study the effect of the most uncertain parameters on the endemic equi-
librium of the model, and on its stebility. Among other things, it is shown that
incressing the disesse-related host death rate may move the system to sustained
oscillations.

1 Introduction

Tick-borne infections are caused by bacteria, viruses, or other pathogens, that
can be transmitted to a host through the bite of an infected tick. Among the
tick-borne diseases that have, in recent years, become a serious problem for
human health [2], are Rickettsiosis, Lyme Disease, Ehrlichiosis, Relapsing
Fever and TBE (tick-borne Encephalitis).

Because of the relevance of the problem, several recent papers have con-
gidered models for tick-borne infections. Some researchers have used complex
models based solely on computer simulations (see for instance [8]), while sim-
pler models, based on differential equations, have been studied in [5,1,4,7].
The main emphasis of these papers has been on the computation of the ba-
sic reproduction mimber, and so on the conditions for infection persistence.
These models are rather complex, so it is difficult to study analytically their
hehaviour, or even their nontrivial equilibria, above the threshold for persis-
tence. Therefore, here we study numerically, using parameter values realistic
for Lyme borreliosis, how the nontrivial equilibrium changes with some pa-
rameters, and we present, some numerical solutions of the system.

2 The Mathematical Model

The model studied here is a special case of the model presented in [7] which
should be referred to for more details. Ticks have a life cycle of three stages:
larvae, nymphs and adults {whose densities will be denoted here L, N and
A), that feed on one, two or three hosts depending upon the species: we will



only consider the three-host cage. Tick-borne infection are transmitted from
infected ticks to susceptible hosts, and vice versa: this type of transmission
is often called viraemic transmission. Recently it has been discovered that
pathogens can be transmitted from an infected tick to a non-infected tick
while they co-feed on the same host: this process is known as non-viraemic
transmission, but, for the sake of simplicity and the lack of parameter esti-
mates, will not be considered here.

Nymphs and adult, ticks are divided into infected and susceptible classes.
It is assumed that ticks feed on two host species, for instance mice and deer:
the first, one (whose size is denoted as H;) can become infected and transmit
the infection, and its dynamics is explicitly modelled; the second one (whose
size is assumed to be a constant Hs) cannot transmit the infection, and is
relevant only in so far as it sustains the tick population. The first population
is divided into three classes, namely susceptible (H,,), infected (Hy;) and
immune (H1,). The model considered here is the following:

L =g*(Hy, Hy) ar(T)(A; + A,) — drL — g" (Hy, Hy) L
N, = mEg™(Hy, Ho)L — m* By Hip" (Hy, Ho)L — dr N, — ¢ (Hy, Hp)N,
N; = m" By Hip" (Hy, Hy)L — drN; — ¢ (Hy, Hp) N,
Ay = mP g (Hy, H2)N, — m” 8 Hip™ (Hy, H;)Ng — dr A,
- QA (Hy, H3)A,
Ay = mP Y Higp™ (Hy, Ho)N, + m g™ (Hy, Ho)N; — dr A
- QA (H1, H3)A;
Hiy = a1(H1)H — diHy, — ¢~ 81 Hip™ (Hy, Ho)N;
- qAﬁfﬂlsIbA (H1, H2)A;
Hy; = ¢" Y Hyp™ (Hy, Ho )N + ¢ B Hy o (Hy, Hp) As — (da + v + o) H
fflr = vHy; — diHi,-
All parameters are described in Table 1 together with their reference values.
‘We only remark here that the function g* describes the rate at which ticks in

stage z encounter hosts, considering the extended feeding period [3,7], while
1 are auxiliary functions; their expressions are the following
1 BiH, + p5H>

(Hy, Hy) = d ¢%(H, H,) =
1)‘-;"( 1, 2) 1+Ci-Hl+C§H2)1 a1 g( 11 2) 1+CiH1+C§HZ)

'z
where cf = g—; forz =L N, Aandi=1,2

Densitydépendence is assumed, for the sake of simplicity, to occur only
in two quantities: the production of larvae per feeding adult tick ar(7") and
the birth rate for host a;(H;). Note however that there is some evidence for
density-dependence in all moulting probabilities [6].

We only report here the formula for B, found in [7] in the spedial case of
only viraemic transmission and setting equal to 1 the probability of becoming



Table 1. Notation used to denote the various varigble and parameters included in

the model
Symbol | Description | Velue
L Larval density variable
N Nymph density variable
A Adult density variable
T Total tick density =L+N+ A
Hi, Density of susceptible hosts 1 variable
Hy; Dengity of infected hosts 1 variable
Hy, Density of immune hosts 1 variable
H Total density of host species 1 = Hi, + Hy + Hiy
Ha Nou-virgemic host density 0.1 (ha)™*
ar Number of larvae produced by an adult tick 1,300 —0.1-7T
dr Natural death rate of ticks (the same for all 0.06688 (days)~"
otoges) 4 H1
ax Birth rate of hosts 1 % ~ 365 30 (d)™
d Natural death rate of hosts 1 1/365 (d.)~*
a Disense related death rate of hosts 1 ?
~ Recovery rate of viraemic host 0-0.7 (d.)™"
Encounter rate between questing ticks in stage z
1
p (z = L, N, A) and hosts H; (i =1,2) see below
o Detachment rate of ticks in stage z (z = L, N, A) 04 ()~
¢ feeding on hosts H; (i=1,2) A
. Moulting success probability for ticks in stage z
m 2= L, N) 0.15
M %’robabi]ity of becoming infected for a host 1 bit- o
q ten by an infectious tick in stage z (2 = NV, A) )
infected for a susceptible tick feeding on an infected host:
_ migiytL gV By Hip 1)
di+v+a dr+g¥
m By L mNgV B Hwt  mNEN VN ¢t H
d+v+a dr+g" dr+gt d+y+a dr+gt

where all quantities L, N, 4 and H; are computed at the pathogen-free
equilibrium. Recall that By >> 1 is the condition for pathogen persistence.

3 Choice of Functions and Parameters

Our parameter choice has been tuned towards the dynamics of Lyme bor-
reliosis in the province of Trento, Italy, where the relevant tick species is
Irodes ricinus while H, represent small rodents (especially Apodemnus spp-
and Clethrionomys glareolus) and Hs roe deer. As far as possible, we used



parameter estimates taken from the literature or derived, according to pro-
cedures that will be described elsewhere, from data collected by researchers
of the Centre for Alpine Ecology (CEA); however, for some parameters we
could produce only educated guesses. All the parameter values used are listed
in Table 1, except for the contact rates S7 which are estimated as follows:

L N A
on host 1|0.028402  0.000887 0
on host 2 |0.048798  0.028779  0.12849

As for the functional form of density dependence, we chose the simplest:
arM=rr—srTand ay(H) =71 —{r —dl)%’;, where 7y and d; are the
natural birth and death rate of hosts 1, and K is their carrying capacity; rr
is the average egg production per fed adult tick, and st is related to ticks’
carrying capacity.

Some parameters for which there exist no sensible estimates are ¢, ¢*
and ¢, which we will vary in the simulations. As for v, while it is known that
infected mice remain positive for a couple of weeks (v = & (days)™'), it is
generally thought that infected mice remain infectious, although perhaps to

a lesser degree, forever (v a2 0); thus, we will also let, v vary.

4 Simulations

In this Section we show some mymerical results: we study the effect of some
parameters on the endemic equilibrium of the model, and on its stability
(using software CONTENT and XPP). We let one parameter vary at a time,
while all other parameters are set at the values listed in Table 1; for the
uncertain ones we used:

¥ =0.5=g"~v=0.01,¢ = 00005

For this set of parameters we find the reproduction number Ry ~ 17.09 and
a positive equilibrium point at:

L8062, N, ~ 345, N; ~ 85.3, 4, ~ 148,
A; ~ 769, Hy, ~ 219, Hy; & 592, Hy, 216

Effect of Ho: It was found [4] that an increase of Ho may decrease Ry,
hence act against parasite persistence, since, when Hs is large, many bites
of infected ticks get “wasted” on incompetent hosts: this was named the
“dilution effect”. Here we see (Fig. 1a) that this effect occurs at unrealistically
high population densities: there is a branching point (B.P.) slightly above 100,
meaning that, beyond that value, By < 1. Another branching point is at, Hs =
0.089. In between these values, there exists an infected equilibrum; it can he
seen that the equilibrium density of infected hosts is almost independent, of
the value of Hy over the range 0.1-10.
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Fig. 1. Variation of equilibrium level of infected hosts with Hs {left part) or ¢”
(right part).

Effect of g : As expected, the equilibrium density of infected hosts in-
creases with increasing g", first sharply, then more moderately. The threshold
value (B.P.) is at ¢’V ~ 0.035 (see Fig. 1b).

Effect of v: With increasing -, the density of infected hosts decreases (see
Fig. 2a) and at v = 0.186 we get a branching point. When ~ approaches 0,
the density of infected hosts greatly increases.
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Fig. 2. Varigtion of equilibrium level of infected host with «y (left part) or a (right
part).

Effect of o: The parameter  (disease-induced death rate of mice) has a
more complex effect. While the density of infected hosts decreases monoton-
jcally with increasing « up to the branching point, at « = 0.176, there are
two Hopf points, the first at a ~ 0.0165 and the second at a ~ 0.139 (gee
Fig. 2b). Presumably, when « is between the two Hopf points, the system
will exhibit oscillations. Two simulations, with ¢ below and above the first
Hopf point, are shown in Fig. 3.

To conclude, we remark that this preliminary study has provided some
intuition about the behaviour of this model for realistic parameter values.
Certainly, much more research is required on parameter estimates and on the
properties of this system of equations, before being able to apply reliably this
(or similar) model to our case study.
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Fig. 3. Numerical solutions of the system with & = 0.0002 (solid line) and a = 0.02
(dashed line). In the left part, number of infected nymphs ageainst time; in the right,
total number of larvee
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