Statistics for the Doctoral School in Biomolecular Sciences Academic year 2014-2015

Exercises after Lecture 3

Introductory statistics

The following are basic (and quite intuitive) properties of expectation and variance that have to be used in the next 3 exercises:

$$\begin{split} \mathbb{E}(cX) &= c\mathbb{E}(X), \\ \mathbb{V}(cX) &= c^2\mathbb{V}(X) \end{split} \qquad \qquad \\ \mathbb{E}(X+Y) &= \mathbb{E}(X) + \mathbb{E}(Y) \\ \mathbb{V}(X+Y) &= \mathbb{V}(X) + \mathbb{V}(Y) \text{ (if } X \text{ and } Y \text{ are independent)} \end{split}$$

EXERCISE 3.1 A morphometric index D is the difference between the length of lower L_i and upper limbs L_u . Assume that both the measures of L_i and L_u have an error of mean 0 and standard deviation 1 cm, and that the errors of the two measures are independent. Which is the standard deviation of the error in the measure D?

Repeat now the same measurements on a sample of n = 100 individuals, and compute the mean (on this sample) of L_i , L_u and D. Which is the standard deviation of the error of the means?

EXERCISE 3.2 Show that, if $\mathbb{E}(X) = \mu$ and $\mathbb{V}(X) = \sigma^2$, then $Y = (X - \mu)/\sigma$ satisfies $\mathbb{E}(Y) = 0$ and $\mathbb{V}(Y) = 1$. On the basis of this, convince yourself¹ that, if $X \sim N(\mu, \sigma^2)$, then $Y \sim N(0, 1)$ a standard normal.

The following are properties of the standard normal distribution that are useful to compute confidence intervals and to test hypotheses. If $X \sim N(0, 1)$ (standard normal), then

$\mathbb{P}(X > 1.645)$	=	10%	$\mathbb{P}(X > 1.645)$	=	$\mathbb{P}(X < -1.645)$	=	5%
$\mathbb{P}(X > 1.96)$	=	5%	$\mathbb{P}(X > 1.96)$	=	$\mathbb{P}(X < -1.96)$	=	2.5%
$\mathbb{P}(X > 2.326)$	=	2%	$\mathbb{P}(X > 2.326)$	=	$\mathbb{P}(X < -2.326)$	=	1%
$\mathbb{P}(X > 2.576)$	=	1%	$\mathbb{P}(X > 2.576)$	=	$\mathbb{P}(X < -2.576)$	=	0.5%

EXERCISE 3.3 Assume that X follows a normal distribution with expected value μ not known and variance $\sigma^2 = 4$. We take n measures $x_1, \ldots x_n$ and compute \bar{x} .

Show that $\sqrt{n}\frac{\bar{X}-\mu}{2}$ follows a standard normal distribution. Conclude that $\mathbb{P}(\sqrt{n}\frac{|\bar{X}-\mu|}{2} > 1.96) = 5\%$.

From the previous inequality, find the value k such that $\mathbb{P}(|\bar{X} - \mu| > k) = 5\%$. [The interval $(\bar{x} - k, \bar{x} + k)$ is named a 95% confidence interval for μ . On the basis of the previous computations, discuss why this is an appropriate word and what exactly it implies.]

Find the number of samples n such that the value k, obtained in the previous inequality satisfies k < 0.1.

EXERCISE 3.4 A researcher has measured the distance between canine and last molar in 35 upper jaws of wolves, and states that the 95% confidence interval for the mean distance is 10.17 cm < μ < 10.47 cm and that the 99% confidence interval for the mean distance is 10.21 cm < μ < 10.44 cm. Why can we say there is a mistake, even without having seen the data?

And, assuming that the 95% confidence interval is correct and that we can approximate the distribution of the distance as a normal, can we compute the correct 99% confidence interval, again without seeing the data?

EXERCISE 3.5 The quantity X has in a population variance equal to 4. Computing the sample mean \bar{X} on a sample (from this population) of size 100, build a symmetric interval around μ_X (the true mean of X) in which \bar{X} is contained with probability 90%. For this computation, assume that \bar{X} follows a normal distribution.

¹one may note that there is a missing mathematical step that we take for granted.

EXERCISE 3.6 Assume that \bar{X}_1 and \bar{X}_2 are the mean of two independent samples of size n from the same population that has variance σ^2 and normal distribution. Find n such that the probability that \bar{X}_1 and \bar{X}_2 differ more than σ is 1%. [use $Y = \bar{X}_1 - \bar{X}_2$]

EXERCISE 3.7 The tensile strength has been measure in 20 carbon fiber samples obtaining a sample mean of 5,450 and a standard deviation of 250 (in MPa).

Assuming that the tensile strength follows a normal distribution, compute a 95% confidence interval for the mean tensile strength. [The result can be computed using quantiles from the normal distribution, instead of the appropriate t-distribution; the correct method should however be indicated]

Assuming that the true mean and variance are equal to the sample ones, find the stress at which only 5% of fibers would 'neck'².

EXERCISE 3.8 We want to take a poll about the vote at a referendum, choosing a sample of n individuals. How large must the sample be for the standard deviation of the sample mean (i.e., of the fraction of respondents in favour of the referendum) be below 0.1? [we do not know a priori the fraction in favour]

And if we wish to be sure that the standard deviation is below 0.01?

 $^{^{2}}$ tensile strength is defined as the maximum stress that a material can withstand while being stretched or pulled before 'necking,' which is when the specimen's cross-section starts to significantly contract