
Useful material for the course 

Suggested textbooks:  
• Mood A.M., Graybill F.A., Boes D.C., Introduction to the Theory of 
Statistics. McGraw-Hill, New York, 1974. [very complete] 
• M.C. Whitlock, D. Schluter, Analisi statistica dei dati biologici, 
Zanichelli, Bologna 2010 [focussing on (population) biology problems] 
• S. M. Iacus, G. Masarotto, Laboratorio di statistica con R, McGraw-Hill, 
2006 [practical books (in Italian) on using R for statistics] 
 
Software for statistics: 
My advice is to use R      http://www.r-project.org/ 
a programmable environment suitable for statistics. 
Many simple things can be done using Excel, or similar software... 
[ I will not teach how to use software, but will show some examples of R] 
 
These notes and programs will be available at 

 http://www.science.unitn.it/~pugliese/ 
 http://www.science.unitn.it/%7epugliese/ 

 
 



Statistics 

Descriptive Inferential 

Aim: present useful 
information on the 
data 

Aim: understand 
the mechanism that 
generated the data 

Methods: 
histograms, mean, 
variance for 
univariate data. 
More complex for 
multivariate data   

Methods: point 
estimates, 
confidence intervals, 
hypothesis testing, 
analysis of 
variance... 



 Some problems that can be tackled 
with inferential statistics  

 
•  Can I say whether the experimental group has a 

lower risk of heart attack than the control group? or 
has a lower blood pressure? and of how much? 

•  How large should I choose the two groups to be 
able to detect an effect of treatment? 

•  Which is the precision associated to a 
measurement performed?  

•  Is there a (linear) relationship between chlorophyll 
concentration and photosynthetic rate? 

These questions involve experimental design and 
mathematics. I will (almost) only deal with the latter. 



Summary statistics from data

I Mean: x̄ =
1

n

n�

i=1

xi .

I Variance: V =
1

n � 1

n�

i=1

(xi � x̄)2 (reason for dividing by

n � 1 clear with inferential statistics).

I Median: m, the value such that 50% of the data are below m,
and 50% are above m (a precise computation depends on
whether the number of data is odd or even. . . )

I Quantiles: q� is the value that a fraction � of the data is
below q� and 1�� is above (the median is the 50% quantile).



Description of continuous variables 

Box-plot 



Reading box-plots 

Box-plot 

A useful tool  to 
summarize 
information on the 
distribution of a 
variable 
(we can put many 
side by side)   

median 

3rd 
quartiles 

1st 

normal 
range 

outliers 



A “non-parametric” estimation of a 
continuous density from data 



-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Standard normal density

x

de
ns
ity

p(x) =
1p
2�

e�x

2
/2

-4 -2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Several normal densities

x
de
ns
ity

µ = 2 σ = 1,µ = 1 σ = 1,

µ = 2 σ = 2,

p(x) =
1p
2�⇥2

e�
(x�µ)2

2�2

Normal (or Gaussian) distribution 



Visually comparing a distribution 
 to a normal (Q-Q plots) 
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 Summary of methods in  ̀
univariate descriptive statistics 

 
•  Mean, variance, median (summary indices) 
•  Quantiles … 
•  Histogram, box-plots 
•  Empirical density 
•  Comparison with a normal distribution 
•  Q-Q plot (to compare two distributions, in 

particular data with a normal) 

•  Thumb rule: approximately 2/3 of a 
distribution lies  between   
E(X)-sqrt(V(X)) and E(X)+sqrt(V(X)) 



Basic probability

Inferential statistics is based on probability theory (we do not have
certainty, but only confidence).

I Events: something that may or may not happen: A;
P(A)= probability that A happens;

For instance P(it rains tomorrow in Trento); P(there is at least one
son in a family with three children); P(the ball number 90 is
extracted at ‘lotto’).



Basic probability

Inferential statistics is based on probability theory (we do not have
certainty, but only confidence).

I Events: something that may or may not happen: A;
P(A)= probability that A happens;

For instance P(it rains tomorrow in Trento); P(there is at least one
son in a family with three children); P(the ball number 90 is
extracted at ‘lotto’).
Formally, A ⊂ Ω, the sample space (all possible occurrence).
We consider A ∩ B (both A and B occur), A ∪ B (A or B occurs,
or both). . .



Computing probabilities

How do we assign probabilities? We generally use models based on
experience and intuition.
After seeing data, statistics helps in deciding whether the model
used was correct.
Often, it is assumed that all elementary events are equally likely
(classical probability).
Examples...

I Sequences of heads and tails

I Drawing balls from an urn



Random variables

Often, we are more interested in events that concern a quantitative
measure:

I Random variable: something that takes an unpredictable
numerical value: X
P(X = k) = probability that X takes value k.

For instance, X is the number of ‘tails’ when tossing a coin 10
times.



Random variables

Often, we are more interested in events that concern a quantitative
measure:

I Random variable: something that takes an unpredictable
numerical value: X
P(X = k) = probability that X takes value k.

For instance, X is the number of ‘tails’ when tossing a coin 10
times.
Formally,

X : Ω→ R, P(X = k) = P
(
X−1({k})

)
.



Binomial distribution

Assumptions:

I X represents the number of successes in n trials;

I Trials can result only in ‘success’ or ‘failure’;

I Trials are independent;

I The probability of success is the same p in all trials.

Then

P(X = k) =

(
n

k

)
pk(1− p)n−k

where

(
n

k

)
[binomial coefficient] =

n · (n − 1) · · · (n − k + 1)

1 · 2 · · · k

=
n!

k!(n − k)!
with n! [n factorial ]= n · (n − 1) · · · 2 · 1.



Graphical illustration of binomial distributions
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Problem: are data consistent with the assumption of a binomial
distribution?
A classical case study are the sex ratios obtained by Geissler (1889)
on the sex of 6115 sibships, each of 12 children.
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Fitting a binomial

p = frequency of female newborns =
total#females

total#children
≈ 0.480785.

P(# females in a sibship) = k) =

(
12

k

)
pk(1− p)12−k
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Poisson distribution

Another discrete distribution often used is the Poisson distribution,
used for the occurrence of ‘rare’ events:

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . k! = 1 · 2 · · · k.

λ is the only parameter of the Poisson [relations with binomial].
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Poisson approximation

Poisson can be viewed as a limiting case of binomial (law of small
numbers.
The figure shows how binomials with larger n and the same value
for np can be approximated by a Poisson with parameter λ = np

http://www.science.unitn.it/~anal1/matstat_biotech/1112/diario/Pois.pdf


Poisson fit of a distribution
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A Poisson distribution fits a famous dataset by von Bortkiewicz
(1898) on the number of soldiers killed by being kicked by a horse
each year in each of 14 cavalry corps over a 20-year period.



Mean and variance of a random variable

In general, the distribution of a discrete random variable is given
by

I the list of possible values {x1, . . . , xn};
I the respective probabilities {p1, . . . , pn}, i.e. pk = P(X = xk)

For a random variable, one can compute its expected value or
mean:

E(X ) =
n∑

i=1

xipi will be denoted also as µX .

To describe its spread, one uses the variance, i.e. the expected
value of the squared deviations from the mean:

V(X ) = E((X − µX )2) =
n∑

i=1

(xi − µX )2pi =
n∑

i=1

x2
i pi − µ2X .



Mean and variance of some distributions

If X ∼ Bin(n, p) [binomial of parameters n and p]

E(X ) =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k = n · p. [# trials · prob. success]

V(X ) =
n∑

k=0

(k − np)2
(

n

k

)
pk(1− p)n−k = n · p · (1− p).

If X ∼ P(λ) [Poisson of parameters λ]

E(X ) =
∞∑
k=0

k
λk

k!
e−λ = λ.

V(X ) =
n∑

k=0

(k − λ)2
λk

k!
e−λ = λ.



Limit theorems of probability. I. The law of large numbers
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Limit theorems of probability. II. Summing variables

Istogramma del punteggio totale dopo 1.000 lanci
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Limit theorems of probability. III. Central limit theorem
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With an appropriate scaling, the deviations from the mean follow a
universal distribution, the normal or Gaussian.



Normal distribution
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More on normal distribution

Generic normal:

X ∼ N(µ, σ2), density p(x) =
1√

2πσ2
e−(x−µ)

2/(2σ2) :

P(a < X < b) = P(a ≤ X ≤ b) =

∫ b

a
p(x) dx

E(X ) =

∫ +∞

−∞
xp(x) dx = µ, V(X ) =

∫ +∞

−∞
(x−µ)2p(x) dx = σ2.

If X ∼ N(µ, σ2), Z = X−µ
σ ∼ N(0, 1), i.e. standard normal.



Normal approximation to the binomial
If X ∼ Bin(n, p), # successes after n trials

E(X ) = np V(X ) = np(1− p)

for n large [say n ≥ 25, np, n(1− p) ≥ 10] approximate

X ∼ N (np, np(1− p)) .

i .e. P(a ≤ Bin(n, p) ≤ b) ≈ P(a ≤ N(np, np(1− p)) ≤ b).

Continuity approximation

True value: P(40 ≤ Bin(100, 0.42) ≤ 48) = 0.598

P(40 ≤ Bin(100, 0.42) ≤ 48) = P(39.5 ≤ Bin(100, 0.42) ≤ 48.5) ≈
≈ P(39.5 ≤ N(42, 24.36) ≤ 48.5) ≈ 0.600.

while P(40 ≤ N(42, 24.36) ≤ 48) ≈ 0.545


	lez1a_14.pdf
	lez1_15.pdf

