Conditional probability

All probability judgements depend on the available information.
We discuss the conditional probability P(E|F), i.e. the probability
of an event E given that we know that an event F has occurred.
After examine some examples, we arrive at

Definition

Let E and F two events in a sample space Q2 with P(F) > 0.
P(E|F) is defined as:

P(ENF)

P(EIF) = “pepy 1)
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Note: P(E|F) is a new probability of the same event E.



Product rule and independence
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Product rule and independence

Multiplying both sides of (1) by P(F), we arrive at the product

rule:
P(ENF)=P(F)- -P(E|F) (2)

Note: We may use these relations either way. Sometimes we know
P(EN F) and use (1) to compute P(E|F). In other cases, we know
P(E|F) and use (2) to obtain P(E N F)

We consider E and F independent if knowledge of F does not
change the probability of E, i.e. if P(E|F) =P(E). Inserting this
in (2), we obtain

E and F independent if P(ENF) =P(E)-P(F). (3)



Tree diagram

A tree diagram is a graphical tool to represent chains of events.
Suppose | draw 2 cards from a deck of 52. Then

first card second card

red

% s < black

39 _ 3 ) red

5 = 7 E : non-diamonds < black
ac

Product and sum rules translate into visual rules:
» the probability of a chain (say 1st Diamonds-2nd Black) is
obtained by multiplying the probabilities of each link;
» the probability of an event (say 2nd Black) is obtained by
summing the probabilities of all chains leading to the event (in
this case one gets 1/2).



Conditional probability. 2

Referring to the tree diagram, one can compute conditional
probabilities either way:

» P(2nd Black|1st Diamond) = %;

» P(1st Diamond|2nd Black) = 7
To compute the latter, use the definition of conditional probability:

P(1st Diamond and 2nd Black)

P(1st Diamond|2nd Black) = P(2nd Black)
1326
_ 551 _ 13
1/2 51

using the tree diagram to compute P(1stDiamond and 2nd Black)

and P(2nd Black).
We can say we obtained the probability of the cause (the 1st card
we draw), having observed a consequence (the 2nd card drawn)



Bayes' formula

The previous computation generalizes to Bayes' formula.

A1, ... A, alternative hypotheses
[A;ﬂAj:(Z)fori;éj, Alﬁ...ﬂAn:Q]

E = observed event. We know P(E|Aj), j=1...n. Then
P(E|A;) - P(A))
P(E)
= P(E\A-) P(A;)
~ P(A1) - P(E|A1) + -+ P(An) - P(E|A))
P(Aj|E) probability a posteriori of A;.

P(AJ|E) =




Bayes' formula

The previous computation generalizes to Bayes' formula.

A1, ... A, alternative hypotheses
[A,'ﬂAj:(Z)fOI’I'#_/', Alﬂ...ﬂAn:Q]

E = observed event. We know P(E|Aj), j=1...n. Then

P(E)
= P(E IA-) P(A))
P(A1) - P(E|A1) + -+ + P(An) - P(E|A,)
P(Aj|E) probability a posteriori of A;.
But to compute it we need to know also the probability a priori of
A;.

P(AIE) =




Approaches to inferential statistics

» Bayesian statistics: compute a posteriori estimates of
parameters and scientific hypotheses (very little used until
10-20 years ago, mainly because of computational problems
(and also philosophical)

» Frequentist statistics: observed data are only a sample from
infinitely many other possibilities; we assess what could have
happened (standard statistical methods: confidence intervals,
hypothdsis testing. . .)



Bayesian approach to estimation.
We assume that data have been generated according to a model
that includes the parameters .
In the Bayesian approach there is no true value of ¥. There is a
probability a priori for ¢}, and a probability a posteriori after the
sample has been measured.
Correspondigly to Bayes formula:

> P(BIA)P(A;)
where B is the observation. P(A;) is the probability a priori, while
the conditional probability P(A;|B) is the probability a posteriori.
in parameter estimation, one starts from a density a priori p(¥) to
obtain a density a posteriori (after the sample X, ..., X,) given by

_ Py(X1, ..., Xn)p()
[P,(X1,..., Xn)p(p) de

Py(Xi,...,Xy) is the probability of the data (Xi, ..., X,) if the
parameter value is 9.

fpost (1)



Bayesian example (elementary).

Assume that in a binomial phenomenon n = 6, # successes = 4,
and p (which corresponds to the generic ¥) is to be estimated.
Then

Pp(X1 ..., Xn) = (2) p*(1—p)*.

‘Flat’ a priori: p(p) =1 for p € [0, 1], Then

6\ 4 2
p*(l—p .
fpost(P) = 1 Eg) ( ) = Cp4(1 — p)2 with C = 105.
4



Bayesian example: figure
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From the a posteriori plot, one can build 95% credible interval...
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From the a posteriori plot, one can build 95% credible interval...
i.e. an interval [ s.t. P(p € 1) = 95%.



Bayesian example: figure
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From the a posteriori plot, one can build 95% credible interval...

From the graphs one sees some effect of the prior. Increasing n
would make the prior probability less relevant.



Bayesian analysis: conjugate distribution

The beta-binomial scheme:
If the prior distribution is Beta, and the likelihood is Binomial, the

posterior distribution is again Beta (with different parameters).
See Script R for examples.


http://www.science.unitn.it/~pugliese/statdott/esempio2.R

