
Conditional probability

All probability judgements depend on the available information.
We discuss the conditional probability P(E |F ), i.e. the probability
of an event E given that we know that an event F has occurred.
After examine some examples, we arrive at

Definition
Let E and F two events in a sample space Ω with P(F ) > 0.
P(E |F ) is defined as:

P(E |F ) =
P(E ∩ F )

P(F )
. (1)

Note: P(E |F ) is a new probability of the same event E .



Conditional probability

All probability judgements depend on the available information.
We discuss the conditional probability P(E |F ), i.e. the probability
of an event E given that we know that an event F has occurred.
After examine some examples, we arrive at

Definition
Let E and F two events in a sample space Ω with P(F ) > 0.
P(E |F ) is defined as:

P(E |F ) =
P(E ∩ F )

P(F )
. (1)

Note: P(E |F ) is a new probability of the same event E .



Product rule and independence

Multiplying both sides of (1) by P(F ), we arrive at the product
rule:

P(E ∩ F ) = P(F ) · P(E |F ) (2)

Note: We may use these relations either way. Sometimes we know
P(E ∩ F ) and use (1) to compute P(E |F ). In other cases, we know
P(E |F ) and use (2) to obtain P(E ∩ F )
We consider E and F independent if knowledge of F does not
change the probability of E , i.e. if P(E |F ) = P(E ). Inserting this
in (2), we obtain

E and F independent if P(E ∩ F ) = P(E ) · P(F ). (3)
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Tree diagram

A tree diagram is a graphical tool to represent chains of events.
Suppose I draw 2 cards from a deck of 52. Then
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Product and sum rules translate into visual rules:

I the probability of a chain (say 1st Diamonds-2nd Black) is
obtained by multiplying the probabilities of each link;

I the probability of an event (say 2nd Black) is obtained by
summing the probabilities of all chains leading to the event (in
this case one gets 1/2).



Conditional probability. 2

Referring to the tree diagram, one can compute conditional
probabilities either way:

I P(2nd Black|1st Diamond) = 26
51 ;

I P(1st Diamond|2nd Black) = ?

To compute the latter, use the definition of conditional probability:

P(1st Diamond|2nd Black) =
P(1st Diamond and 2nd Black)

P(2nd Black)

=
13
52 ·

26
51

1/2
=

13

51

using the tree diagram to compute P(1stDiamond and 2nd Black)
and P(2nd Black).

We can say we obtained the probability of the cause (the 1st card
we draw), having observed a consequence (the 2nd card drawn)



Bayes’ formula

The previous computation generalizes to Bayes’ formula.

A1, . . .An alternative hypotheses
[ Ai ∩ Aj = ∅ for i 6= j , A1 ∩ . . . ∩ An = Ω ]

E = observed event. We know P(E |Aj), j = 1 . . . n. Then

P(Aj |E ) =
P(E |Aj) · P(Aj)

P(E )

=
P(E |Aj) · P(Aj)

P(A1) · P(E |A1) + · · ·+ P(An) · P(E |An)

P(Aj |E ) probability a posteriori of Aj .
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P(Aj |E ) probability a posteriori of Aj .
But to compute it we need to know also the probability a priori of
Aj .



Approaches to inferential statistics

I Bayesian statistics: compute a posteriori estimates of
parameters and scientific hypotheses (very little used until
10-20 years ago, mainly because of computational problems
(and also philosophical)

I Frequentist statistics: observed data are only a sample from
infinitely many other possibilities; we assess what could have
happened (standard statistical methods: confidence intervals,
hypothdsis testing. . . )



Bayesian approach to estimation.
We assume that data have been generated according to a model
that includes the parameters ϑ.
In the Bayesian approach there is no true value of ϑ. There is a
probability a priori for ϑ, and a probability a posteriori after the
sample has been measured.
Correspondigly to Bayes formula:

P(Ai |B) =
P(B|Ai )P(Ai )∑
j P(B|Aj)P(Aj)

where B is the observation. P(Ai ) is the probability a priori, while
the conditional probability P(Ai |B) is the probability a posteriori.
in parameter estimation, one starts from a density a priori ρ(ϑ) to
obtain a density a posteriori (after the sample X1, . . . ,Xn) given by

fpost(ϑ) =
Pϑ(X1, . . . ,Xn)ρ(ϑ)∫
Pϕ(X1, . . . ,Xn)ρ(ϕ) dϕ

.

Pϑ(X1, . . . ,Xn) is the probability of the data (X1, . . . ,Xn) if the
parameter value is ϑ.



Bayesian example (elementary).

Assume that in a binomial phenomenon n = 6, # successes = 4,
and p (which corresponds to the generic ϑ) is to be estimated.
Then

Pp(X1, . . . ,Xn) =

(
6

4

)
p4(1− p)2.

‘Flat’ a priori: ρ(p) = 1 for p ∈ [0, 1], Then

fpost(p) =

(6
4

)
p4(1− p)2∫ 1

0

(6
4

)
q4(1− q)2 dq

= Cp4(1− p)2 with C = 105.

Assume instead ρ(p) = 6p(1− p). Then

fpost(p) = Cp5(1− p)3 with C = 504.



Bayesian example: figure
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From the a posteriori plot, one can build 95% credible interval...
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From the a posteriori plot, one can build 95% credible interval...
i.e. an interval I s.t. P(p ∈ I ) = 95%.
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From the graphs one sees some effect of the prior. Increasing n
would make the prior probability less relevant.



Bayesian analysis: conjugate distribution

The beta-binomial scheme:
If the prior distribution is Beta, and the likelihood is Binomial, the
posterior distribution is again Beta (with different parameters).
See Script R for examples.

http://www.science.unitn.it/~pugliese/statdott/esempio2.R

