
Hypothesis testing

Null hypothesis H0 and alternative hypothesis H1.
Simple and compound hypotheses.

Simple : the probabilistic model is specified completely.

Compound : the probabilistic model is not specified completely
(generally it will contain parameters to be estimated).

Example 1: we want to test whether data are compatible with the
assumption that their true mean is µ0. Then it could be set as:

H0: X1, . . . ,Xn ∼ N(µ0, σ
2
0) and independent. [simple if

σ2 known];

H1: X1, . . . ,Xn ∼ N(µ, σ20) and independent, with
µ 6= µ0. [compound]



Rejection region

Example 2: we have two groups, and we wish to test whether
they can be considered as samples from the same population, or
from two populations with different means. General assumption:

X1, . . . ,Xn ∼ N(µX , σ
2), Y1, . . . ,Ym ∼ N(µY , σ

2), and independent.

H0: µX = µY , σ
2 > 0.

H1: µX 6= µY , σ
2 > 0.

Both are compound, but H0 is ‘simpler’ than H1.

How does a test work? We select a rejection region C : if data fall
in C , we reject H0 (and accept H1); if data do not fall in C , we
accept (do not reject) H0.



Errors of first and second species

Error of first species: rejecting H0 if H0 is true;
Error of second species: accepting H0 if H1 is true.

A smaller rejection region C decreases error of first species, but
increases those of second species; a larger C vice versa.

A test of hypothesis is a region C : it will have a level (the risk I
take of errors of 1st species) and a power (the probability of not
making errors of 2nd species).



Level and power of a test

Level The probability of an error of 1st species, i.e. to
reject H0 when H0 is true.

Power 1− the probability of an error of 2st species, i.e. to
reject H0 when H0 is false.

If hypotheses were simple, level and power could be computed
exactly.
In actual tests, the level can often be computed or bounded from
above; the power will depend on exact parameter value.

Ideally the level should be close to 0 and the power close to 1. But
to decrease the level, we should reject H0 less often, thus decrease
the power.

Solution? Choose the level α [often 5%]. Then among all possible
tests of level α (i.e. rejection regions s.t. P(X ∈ C |H0) ≤ α) choose
the one of highest power [uniformly most powerful test]; this is not
always possible, but it is the rationale for many well known tests.
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One-sample test on the mean

Example 1: (with σ2 unknown).

H0 : X1, . . . ,Xn ∼ N(µ0, σ
2) and independent, where σ2 > 0.

H1 : X1, . . . ,Xn ∼ N(µ, σ2) and independent, where µ 6= µ0, σ
2 > 0.

The test quantity used is T =
X̄ − µ0
S/
√
n

where S2 is the sample

variance.

It is natural (and can be justified rigorously) to reject H0 when T
is far away from 0.

Under H0, T follows a t(n − 1) distribution. Then we find tα s.t.
P(|t(n − 1)| > tα) = α. Reject H0 if |T | > tα, accept it otherwise.



One-sample test on the mean. II

If [unilateral alternative]

H1 : X1, . . . ,Xn ∼ N(µ, σ2) and independent, where µ > µ0, σ
2 > 0,

then the rejection region is for T positive and large.
Hence we find t ′α s.t. P(t(n − 1) > t α) = α.
Reject H0 if T > t ′α, accept it otherwise.
Vice versa if the alternative hypothesis is µ < µ0.

Often programs (e.g. R) return the p-value = P(|t(n − 1)| > T )
(for a bilateral test), [or P(t(n − 1) > T ) against µ > µ0]. If the
p-value is less than the level we chose, reject H0; otherwise accept.

Observations: unilateral alternatives make it easier rejecting the
null hypothesis (hence they are seldom used).
In practice, border-line results suggest further research.
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Ȳ − X̄

sX ,Y

√
1

n
+

1

m

follows a t(m + n− 2) distribution.

Assumptions: normality, independence, equality of variances
(should be checked [sometimes variable transformations help]).



Test on equality of the means

Independent samples (e.g. 2 groups with different treatments)

X1, . . . ,Xn ∼ N(µX , σ
2), Y1, . . . ,Ym ∼ N(µY , σ

2), and independent.

H0 : µX = µY , σ
2 > 0. H1 : µX 6= µY , σ

2 > 0.

Estimate of σ2 : S2
X ,Y =

1

n + m − 2

(
(n − 1)S2

X + (m − 1)S2
Y

)
Under H0 T =
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√
1

n
+

1

m

follows a t(m + n− 2) distribution.

Assumptions: normality, independence, equality of variances
(should be checked [sometimes variable transformations help]).
A modified version (Welch t-test) works without assuming equal
variances.



Test on equality of the means. II

Paired samples (e.g. same individuals before/after treatment)

General assumption

Di = Yi − Xi ∼ N(µ, σ2), i = 1 . . . n.

No assumption on Xi and Yi , but only on their differences (the
effect of treatment).

H0 : µ = 0, σ2 > 0. H1 : µ 6= 0, σ2 > 0.

This is simply a test that the true mean of D = Y − X is 0.

It will be easier rejecting H0 because generally sD is much smaller
than

√
2sX ,Y .

Basic assumption: the effect of treatment is additive (does not
depend on the original value of Xi ).



Paires samples. An example

Body and encephalus temperature measured on 6 ostriches kept at

hot outside temperature:

Ostrich Body T encephalus T

1 38.51 39.32
2 38.45 39.21
3 38.27 39.20
4 38.52 38.68
5 38.62 39.09
6 38.18 38.94
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Body and encephalus temperature measured on 6 ostriches kept at

hot outside temperature:

Ostrich Body T encephalus T

1 38.51 39.32
2 38.45 39.21
3 38.27 39.20
4 38.52 38.68
5 38.62 39.09
6 38.18 38.94

X̄ = 38.425 Ȳ = 39.073 SD = 0.283 T =
√
n
Ȳ − X̄

SD
= 5.6099.

p-value = P(|t(5)| > 5.6099) = 0.00249.

Reject µY−X = 0.
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Non-parametric tests

One may question the assumption that differences are normally
distributed.
There exists tests that are not based on a specific parametric form.

Sign test: H0 : median of D = 0. H1 : median of D 6= 0.

Under H0, P(Di > 0) = P(Di < 0) = 1
2 . Count number of positive

n+ and negative n− observations: if they are far from n
2 , reject H0.

Example of ostriches: n+ = 6, n− = 0. Which is the probability,
under H0, to have a result as extreme (or more)?

P(n+ = 6) =

(
1

2

)6

= 0.015625 = P(n+ = 0), p-value = 3.125%.

Sign test is very robust, but not very powerful (rejecting H0 is
difficult).
There exist intermediate tests such as Wilcoxon’s test, that use not
only signs, but also ranks of observations.



Chi-square test
General chi-square test:
We have k types of events that can occur in each trial, with a
priori probabilities for them

p01 , . . . , p
0
k with p01 + · · ·+ p0k = 1.

After n trials, we observe

n1 events of type 1, n2 of 2, . . . , nk of k, with n1 + · · ·+ nk = n.

Are data compatible with expectations? (k = 2 is binomial)

Classical test: chi-square:
Set Ei = np0i (expected number of events of type i under H0),

X 2 =
k∑

i=1

(ni − Ei )
2

Ei
∼ χ2(k − 1) for n large.

Find cα s.t. P(χ2(k − 1) > cα) = α. If X 2 > cα, reject H0; accept
it otherwise.



Chi-square for data fit to a distribution

The values p01 , . . . , p
0
k can be those arising from some distribution.

Often the distribution will contain parameters to be estimated (e.g.
λ of Poisson).
One can use the chi-square: if m parameters are estimated,
X 2 ∼ χ2(k −m − 1) (of course m < k − 1).
Example: data (Von Bortkiewicz, 1898) on Prussians soldiers
kicked to death by horses:

i (deaths) ni (number of corps/years)

0 109
1 65
2 22
3 3
4 1

Total 200



Chi-square example (continued)

Estimate λ with the sample mean
λ̂ = (1 · 65 + 2 · 22 + 3 · 3 + 4 · 1)/200 = 0.61. Compute Ei .
Join the classes ≥ 3 (rule of thumb: Ei ≥ 5) to obtain:

i ni Êi

0 109 108.67
1 65 66.29
2 22 20.22
≥ 3 4 4.82

Total 200

Compute X 2 ≈ 0.32. p-value = P(χ2(2) > 0.32) = 85.2%.



Chi-square test of independence

A classical use of chi-square is when we observe two qualitative
variables X and Y .

H0 : variables are independent; H1: they are not independent.

X : k levels, Y : l levels (if k = l = 2, a 2× 2 contingency table).

Data: nij (# of observ. with X = i and Y = j ).
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A classical use of chi-square is when we observe two qualitative
variables X and Y .

H0 : variables are independent; H1: they are not independent.

X : k levels, Y : l levels (if k = l = 2, a 2× 2 contingency table).

Data: nij (# of observ. with X = i and Y = j ).

H0 : P(X = i , Y = j) = piqj for all i and j

pi , i = 1 . . . k − 1, qj , j = 1 . . . l − 1 to be estimated from data.

H1 : P(X = i , Y = j) 6= piqj .



Computations in test of independence

Row totals: ni• =
l∑

j=1
nij

column totals: n•j =
k∑

i=1
nij

grand total: n•• =
k∑

i=1
ni• =

l∑
j=1

n•j .
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ni•n•j
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so that X 2 =
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Êij

This to be compared with χ2(k · l − k − l + 1) = χ2((k − 1)(l − 1)).



Computations in test of independence

Row totals: ni• =
l∑

j=1
nij

column totals: n•j =
k∑

i=1
nij

grand total: n•• =
k∑

i=1
ni• =

l∑
j=1

n•j .
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n••

so that X 2 =
∑
i ,j

(nij − Êij)
2

Êij

This to be compared with χ2(k · l − k − l + 1) = χ2((k − 1)(l − 1)).

Chi-square is only an approximation. One can perform exact tests
based on binomial (Fisher’s test)



Example of test of independence

In a (hypotethical) study a set of individuals was treated with an
antiviral or a placebo, and then experimentally infected with a mild
strain of influenza. From following analyses, individuals were
classified as “No virus”, “Virus but no symptoms”, “severe
infections” obtaining the table:

NV VNS SI Total

Antiviral 8 21 4 33
Placebo 6 14 12 32

Total 14 35 16 65



Example: computations

Observations:

NV VNS SI Total

8 21 4 33
6 14 12 32

14 35 16 65

Expected values:

33·14
65 = 7.1 33·35

65 = 17.8 33·16
65 = 8.1

32·14
65 = 6.9 32·35

65 = 17.2 32·16
65 = 7.9

X 2 =
(8− 7.1)2

7.1
+

(21− 17.8)2

17.8
+

(4− 8.1)2

8.1
+

(6− 6.9)2

6.9

+
(14− 17.2)2

17.2
+

(12− 7.9)2

7.9
= 5.605.

p-value = P(χ2(2) > 5.605) = 6.1%.
We cannot reject independence, though it is a borderline case.
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Comparison of means of multiple groups

When we have many (more than 2) groups, we may think to
perform t-tests for µ1 = µ2, then µ1 = µ3, then µ2 = µ3 . . .
Why is this not appropriate? not optimal?
If we perform many tests, we need to correct probability levels. If
we perform 20 tests, each with 5% probability of being positive, we
suspect some may become positive just for chance. . .
Tests are not independent. . .
Proper way to correcting for this: analysis of variance.


